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Abstract

This paper describes a simple in-situ process of synthesizing highly dispersed palladium

nanoparticles (PdNPs) using aqueous leaf extract of GarciniapedunculataRoxb as bio-

reductant and starch (0.3%) as bio-stabilizer. The PdNPs are characterized by techniques

like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis

of nanoparticles was carried out in absence of starch, agglomeration of particles has been

noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for

three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl

bromides and iodides) with arylboronic acids; selective oxidations of alcohols to correspond-

ing carbonyl compounds; and reduction of toxic Cr(VI) to nontoxic Cr(III). Our catalyst could

be reused up to four cycles without much compromising with its activity. Furthermore, the

material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel

multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The mini-

mum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of

PdNPswere found to be 0.06 and 0.12 mM respectively.

Introduction

Over the past few decades, delving into the synthesis of metalnanoparticlesviz. gold, silver,

Zinc, platinum, palladium, etc.have fetched considerable attention in the fields of material and

biological sciences [1–8]. Amid other metal NPs, Pd is gaining special mention because of its

profound applications as catalyst in large number of organic transformations which include-

various types of carbon-carbon cross-coupling [9,10], oxidation [11,12]and reduction reac-

tions. [13,14]. Traditionally, Pd NPs are synthesized via various physical or chemical methods

with the aid of toxic and hazardous reducing and stabilizing agents, however, over the years, in

the quest of ‘going green’, there has been a paradigm shift towards bio-inspired strategies for

the synthesis of metal NPs [15–17]. The biocompatibility and environmentally benign proper-

ties attributes to these biological techniques to supersede the conventional physical and wet-
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chemical methods. The field of biological synthesis of Pd NPs encompasses the use of plant

extracts, microorganisms, marine organisms, etc. as green-reductants. Amongst those meth-

ods, the tapping of bio-resources, particularly the plant extracts for the synthesis of the NPs

seems promising owing to their ready availability, rapid process, better cost-effectiveness, and

the ability to use in large-scale biosynthesis [18]. Hence, plant mediated syntheses of PdNPs,

has gained many recent attentions[19,20]. Examples include use of peel-extract of banana [21],

leaf-extracts of Pulicaria glutinosa[16],Perilla frutescens[17],Euphorbia granulate[22],Ocimum
Sanctum[23], Origanum vulgare [24],etc. and some of the systems have been successfully

applied as catalysts for organic reactions like Suzuki-Miyaura reactions[16,21,25–28], oxida-

tion of alcohols [24], hydrodechlorination of p-chlorophenol [29], etc. Unfortunately, baring a

couple of examples [22,25,28], majority of these reported plant-based catalysts often suffer

from limitations like high reaction temperatures (up to 120˚C), high catalyst loadings (up to

12 mol%), limited substrate scopes and / or use of undesirable organic solvents as reaction, etc.

Moreover, the reported plant-based Pd NPs mostly tested for a single catalytic system, while

their multifunctional potentiality remains largely under-explored. Thus, the appropriate selec-

tion of plant extract which can bestow multifunctional roles viz., bio-reduction of Pd salts, aid

in multiple catalytic reactions and afford biological activities is highly desirable. In this context,

we would like to exploit a bio-resource namely Garcinia pedunculata Roxb aqueous leaf extract

for the synthesis of Pd NPs. This leaf extract has been traditionally known to possess multiple

medical uses, validated by ethno-pharmaceutical research [30]. Literature reveals the presence

of phytochemical constituents like polyphenol, flavonoid, hydroxycitric acid in the leaf extract,

which functions as active components for bio-reduction [31]. To the best of our knowledge,

the potentiality of this plant has not been explored for synthesizing and functionalizing metal

NPs till date. Herein, along with the synthesis of PdNPs, we have also explored the versatility

of these NPs as multifunctional catalyst for Suzuki-Miyaura cross-coupling reactions of aryl

halides, alcohol oxidation and Cr(VI) to Cr(III) reduction reactions using water as a reaction

media. The antibacterial activity of the Pd NPs was also was investigated against a novel multi-

drug-resistant clinical bacterial isolate Cronobacter sakazakii strain AMD04. It is worth men-

tioning that the novelty of this reported synthesis of Pd NPs lies in appropriate selection of the

bio-resource, which not only aids in the synthesis, but unlike other biogenic process plays a

crucial role in bestowing multiple catalytic and antibacterial properties. Of note, the multifunc-

tional catalytic aspects of the synthesized PdNPs viz., C-C cross-coupling, oxidation and

reduction reactions constitute an added asset.

Experimental materials and methods

Fresh green leaves of G. pedunculata Roxb (ESI: S1 Fig) were collected from Dergaon area

(26.6969˚ N, 93.9853˚ E) of Golaghat District, Assam, India. Palladium acetate [Pd(OAc)2]

was purchased from Merck India Pvt. Ltd. All the bacteriological media used in the present

study were procured from HiMedia Laboratories Pvt. Ltd. The other common laboratory

chemicals are of analytical grade and were purchased from different Indian firms. FTIR spectra

(400–4000 cm-1) were recorded in KBr using Shimadzu (Prestige-21) spectrophotometer.

The X-ray diffraction (XRD) study was performed in a Rigaku X-ray diffractometer (model:

ULTIMA IV, Rigaku, Japan) with a Cu Kα X-ray source (λ = 1.54056 Å) at a generator voltage

of 40 kV and a generator current of 40 mA. The Transmission electron microscopy (TEM)

and high were carried out on a JEOL JEM-2011 electron microscope operated at an accele-

rating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) study was performed at

‘‘Centro de Materiais da Universidade do Porto” (Portugal), using a Kratos Axis Ultra HSA

spectrometer with a non-monochromatized Mg Ka radiation (1253.6 eV). The scanning
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electron microscope (SEM) spectra were recorded using JEOL Model JSM - 6390LV and

energy dispersive X-ray (EDX) peaks were recorded in JEOL Model JED– 2300. Bacterial

growth was measured with the help of UV-VIS spectrophotometer (Shimadzu UV-1800,

Japan).HPLC analysiswas done with Agilent HPLC System (Infinity 1200) equipped with

Multi-Wavelength Detector. Thermogravimetric analysis (TGA) was performed using Perkin

Elmer STA-8000 at the heating rate of 10˚C per min under nitrogen atmosphere. Dynamic

Light Scattering (DLS) study was done by using Zetasizer analyser (Model: Nano ZS, Malvern,

UK) instrument.

Preparation of plant leaf extract

100 gm fresh leaves of G. pedunculataRoxbwere chopped nicely and then added slowly in 500

mL deionized water with occasional shaking. The aqueous mixture was boiled for 30 min with

continuous stirring and then allowed to cool to room temperature. The leaf extract was then

filtered using Whatman no.1 filter paper and the filtrate was stored at 4˚C for further use.

Synthesis of palladium nanoparticles

500 ml aqueous leaf extract of the plant G. pedunculataRoxb was mixed with 1000 ml of palla-

dium acetate (1mM) solution containing 0.3% of starch. The reaction mixture was allowed to

stir continuously for overnight and then autoclaved at 121˚C for 15 min. The color of the solu-

tion changed from orange to dark brown, consistent with the formation of PdNPs. The NPs

were then separated from the aqueous suspension by centrifugation at low temperature at

30,000 g for 30 min and then washed twice by deionized water and finally dried in an oven at

80o C.

General procedure for the Suzuki-Miyaura reaction

Forthe Suzuki-Miyaura reaction, a 50 mL round-bottomed flask was charged with aryl halide

(0.5 mmol), arylboronic acid (0.65 mmol), K2CO3 (1 mmol), catalyst (0.002 g; 0.0005 mmol of

Pd) and water (4 mL) and stirred at appropriate temperature. The progress of the reaction was

monitored by thin layer chromatography using aluminum coated TLC plates (Merck) under

UV light. At the end of reaction, the mixture was cooled down to room temperature and the

product diluted with water (10 mL) and extracted with ether (3 x 15 mL). The combined

extract was washed with brine (3 x 15 mL) and dried over Na2SO4. After evaporation of the sol-

vent under reduced pressure, the residue was subjected to column chromatography with ethyl

acetate/hexane (1:9) as eluent to get the desired product.

Reusability experiment

A 100 mL round-bottomed flask was charged with p-bromotoluene (2.5.mmol), phenylboro-

nic (3.25 mmol), K2CO3 (7.5 mol), H2O (20 mL), catalyst (10 mg; 0.0025 mmol) and stirred at

50˚C for 3 h. After the reaction was over, the reaction mixture was cooled to room temperature

and then 20 mL of EtOH was added and stirred for 10 min. The catalyst was then separated by

centrifugation (14,000 rpm for 15 min), washed thoroughly with EtOH-H2O (1:1) followed by

ethyl acetate, dried under vacuum and then used for subsequent runs.

General procedure for alcohol oxidation reaction

A 50ml round bottomed flask was charged with alcohol(1.2mmol),TBHP(2.4mmol),

K2CO3(0.0075 mmol), catalyst (3mg, 0.0007 mmol) and H2O (10mL). The reaction was carried

out at 80˚C with continuous stirring and monitored by using TLC.On completion of the
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reaction, the mixture was extracted with ether and dried over Na2SO4.The solvent was evapo-

rated under reduced pressure to obtain the concentrated organic product which was extracted

with ethyl acetate and analyzed by gas chromatography (Agilent 7820A) with mass detector

(Agilent 5975 series).

Procedure for Cr (VI) reduction

Formic acid (0.3 ml) was added to 50ml of aqueous K2Cr2O7(0.001M) to prepare an acidified

solution of Cr(VI). To this solution, 10ml of aqueous sodium acetate trihydrate(0.5M) was

added dropwise to maintain a pH of 2.The reaction mixture was stirredat room temperature in

presence of 3mg(0.0007 mmol) of the PdNP catalyst and then monitored with UV-vis

spectrophotometer.

Isolation, screening and identification of novel MDR isolates

MDR bacterial isolates were screened from clinical samples collected from Assam Medical

College Hospital, Dibrugarh by observing their resistance patterns against at least four antibio-

ticsout of the following: Metropenem (10mcg), Polymixin B (10mcg), Metronidazole (5mcg),

Novobiocin (30mcg), Cefixime (5mcg), Ciprofloxacin (5mcg), Tetracycline (30mcg), Genta-

mycin (30mcg), Amikacin (30mcg), Rifampicin (5mcg), Erythromycin (15mcg), Ampicillin

(10mcg), and Imipenem (10mcg). The isolate showing resistanceagainst maximum number of

antibiotics was then identified by 16S rDNA sequencing technique using 704F forward primer

(5’-GTAGCGGTGAAATGCGTAGA-3’) and 907R reverse primer (5’-CCGTCAATTCMTTT
GAGTTT-3’).

Evaluation of antimicrobial activity

Antimicrobial activity of Pd NPs was evaluated by agar plate well diffusion method by loading

10 μL of the plant extract, 1 mMPd(OAc)2 solution, and aqueous suspension of PdNPs in

respective wells. The plates were then incubated overnight at 37˚C and zone of inhibition was

observed around the wells. The antimicrobial activity in terms of minimum inhibitory concen-

tration (MIC) and minimum bactericidal concentration (MBC) of Pd NPs was examined by

the standard broth dilution method[32]. The lowest concentration of Pd NPs causing signifi-

cant decline in the bacterial growth as compared to that of control was considered as the MIC,

while the minimum concentration of PdNPs which completely inhibits the bacterial growth

was considered as MBC. Bacterial growth was measured as an increase in the absorbance of

the 600 nm peak determined by a spectrophotometer at an interval of 1 h. Sterile test tubes,

each containing 1 mL of LB (Luria Bertani) broth were inoculated with 100μL of freshly pre-

pared bacterial suspension in order to maintain initial bacterial concentration (103−104 CFU/

mL). 1 mM of PdNPs solution was prepared and diluted to 0.02, 0.04, 0.06, 0.08, 0.1, 0.12 mM

in 1mL culture of above mentioned Cronobactersakazakiistrain AMD04 and then incubated in

an orbital shaker at 200 rpm and 37˚C (Sartorius StedimCertomat BS-1 shaker incubator, Ger-

many Ltd.). The control was devoid of NPs containing inoculums and LB broth.

Evaluation of anti biofilm activity

Inhibition of biofilm formation in presence of PdNPs was determined and quantified by crys-

tal violet staining method [33]. Overnight culture of novel MDR clinical isolate Cronobacter
sakazakii strain AMD04 was diluted (1:100) and inoculated into a micro titre plate containing

increasing concentrations of PdNPs in dilute (1:100) Luria Bertani (LB) Broth. After 24 h of

incubation, the micro titre plate was washed with phosphate buffer saline (PBS) to remove the
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unbound cells and left to air dry. The plate was stained with 0.1% crystal violet for 10–15 min-

utesand then washed thoroughly in phosphate buffer saline (PBS) followed by drying at 60˚C.

Crystal violet was extracted using 30% acetic acid for 10–15 min and absorbance was recorded

at 595nm.

Statistical analysis

All the biological experiments related to antimicrobial study were carried out in triplicate and

results are expressed in mean ± S.D. Significance of the results were checked by performing

student’s t-test (p<0.05) using online statistical tool graphpad (https://www.graphpad.com/).

Results and discussion

Synthesis and characterization of palladium nanoparticles

The PdNPs are synthesized by a simple in-situ method treating a solution of [Pd(OAc)2] with

aqueous leaf extract of the plant G. pedunculataRoxb in presence of 0.3 mol% of starch. Since,

we have not used any external reducing agent, it is logical to assume that the phytochemical

constituents performed the reduction Pd+2!Pd0. In order to investigate the phyto-constitu-

ents responsible for this reduction, we have performed HPLC analysis of the leaf extract and

gallic acid was found to be the major constituent present in the bio-extract. The presence of

gallic acid was further confirmed by HRMS analysis which shows a molecular ion peak [M-

2H]+atm/e 168 [ESI:S2 Fig].It is worthy to note that the reducing potential of gallic acidfor syn-

thesizing metal NPs has been reported in literature [8,34]. Hence, we believe that in our case

also the gallic acid has been acted as bio-reducing agent, although the possibility of other

minor constituents cannot be ruled out.

The morphology of the starch-assisted Pd NPs was studied by SEM and TEM analysis. The

TEM images reveal that NPs are well dispersed and are of both spherical and non-spherical

morphologies with sizes ~2–4 nm (Fig 1A and 1B). Interestingly, when the same synthesis was

carried out in absence of starch, the nanoparticles are found to be in the agglomerated form

[ESI: S3 Fig].The high magnification TEM image of the Pd NPs along with the lattice fringes

with an inter fringe distance of 0.21 nm corresponding to the (111) plane of PdNPs is pre-

sented in Fig 1C. The selected area electron diffraction (SAED) pattern (Fig 1D) is consistent

with the face centre cubic (fcc) arrangement of the Pd nanocrystals [35].Unfortunately, the Pd

particles are not clearly visible in the SEM image, although the EDX analysis shows the pres-

ence of Pd along with other elements such as N, O, and S (ESI: S4 Fig). The FTIR spectra of the

Pd-based material (ESI: S5A Fig) shows three very prominent peaks at 3338(br), 1616 and

1750 cm-1. The first two peaks could be attributed to theυOHstretching andυOHbending of the

phenolic hydroxyl groups, while the 3rd peak could be due to the carbonyl group of gallic acid.

For comparison, an FTIR spectrum of the powdered dry leaf sample was also recorded (ESI:

S5B Fig). In fact, those three peaks of the Pd NPs were also present in the FTIR spectra of dry

leaf sample. However, significant shifts of the υOH stretching (from 3338 cm-1 to 3269) and

bending (from 1616 to 1652 cm-1) were noticed suggesting involvement of a coordinative

interaction between the Pd and the galic acid.In addition, some minor changes have also been

observed in the far-infrared region. For instance, a band at 384 cm-1 in the dry leaf sample

shifts towards lower wavenumber upon interaction with Pd.

The formation of PdNP was further evidenced from the XRD investigation. The XRD pat-

tern of the Pd NPs is shown in Fig 2. The distinct peaks of the Pd NPs were observed at 2θ of

39.96˚, 46.50˚, 68.54˚ and 82.16˚ diffracted from the (111), (200), (220) and (222) planes with

corresponding d-spacing values of 2.254, 1.951, 1.37 and 1.172 Å respectively (JCPDS card No.

001–1201). In addition, three other peaks were also observed at 2θ of 34.22˚, 55.72˚, 86.38˚
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with corresponding d-spacing values of 2.62, 1.65, and 1.12 Å indicated the presence of PdO

phases along with the Pd NPs (JCPDS card No. 002–1432). It may be noted that often wide-

angle XRD issued to investigate size and shape of nanoparticles[36].UsingScherrer equation,

the average size of the Pd nanoparticles are found to be about 1.5 nm which is close to that

obtained from the TEM spectra. However, when the particle size distribution was measured

through DLS, an average hydrodynamic diameter of 322 nm was found; possibly imply

Fig 1. TEM images; (a) & (b) Highly dispersed spherical PdNPs synthesized by using G. pedunculataRoxb. leaf extract; (c) magnified TEM image of a single

metal nanoparticle along with lattice fringes for (111) fcc plane; (d)selected-area electron diffraction (SAED) pattern.

https://doi.org/10.1371/journal.pone.0184936.g001
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aggregation of nanoparticles occurs in the aqueous suspension. Similar types of larger particle

sizes determined by DLS study(ESI. S6 Fig) compared to those determined by TEM are also

found in literature with other Pd-based materials [37].

The presence of two different oxidation states of Pd was further corroborated by the charac-

teristics 3d3/2 and 3d5/2 peaks in the XPS spectra. The high resolution peak of Pd 3d5/2 (Fig

3) can be deconvoluted into two peaks: a larger one is at 337.8 eV and a smaller one is at 335.7

eV. The first peak is typical for a Pd(II) species, while the second one is for Pd(0). The XPS sur-

vey spectrum of the material shows in addition to palladium, the material also contain carbo-

nand oxygen From their atomic percentages, the surface amount of Pd was calculated as 1.20

mM/g. The O1s peak (ESI. S7 Fig) appears at 533.1 eV which is very near to that reported for

PdO [38,39].The thermal decomposition study of the bio-synthesized PdNPs indicated a

three-step degradation process (ESI: S8 Fig). The initial minor decay of about 1.5% at around

100˚C was attributed to phsyi-adsorbed water associated with the nanomaterials, while the sec-

ond and third decay at 235–345˚C and 345–682˚C with corresponding weight lossesof 69%

and 23% could be attributed to the phenolic–OH and the bio-organic molecules respectively.

Residual weight of14% could be ascribed to metallic Pd or PdO.

Suzuki-Miyaura activity

The palladium catalyzed Suzuki-miyaura cross-coupling reactions between aryl halides and

aryboronic acids is one of the most extensively studied reactions in organic synthesis [3,40]. A

wide range of Pd-catalysts including Pd NPs are known that could perform this reaction under

mild conditions. It is worth to note that PdNPs of less than 5 nm often show very good cata-

lytic activities in the Suzuki-Miyaura cross-coupling reaction[41–43]. To check the catalytic

Fig 2. Wide-angle powder XRD pattern of biosynthesized PdNPsin presence of starch (0.3%).

https://doi.org/10.1371/journal.pone.0184936.g002
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activity of the synthesized PdNPs, we have preformed the Suzuki-Miyaura reaction using p-

bromotolouene and phenylboronic acid as model substrates. Initially, the model reaction was

performed at room temperature in water with 2 mg of catalyst using K2CO3 as base and 72%

(Fig 4, entry 1) product formation was achieved after a span of 3h. However, increasing the

temperature to 50˚C, almost quantitative formation of biphenyl was obtained within 2h (entry

2). Based on our initial success; we have tested the scope of our catalytic system for other re-

presentative aryl bromides or iodides including heteroaryl halides that are usually difficult to

activate in the Suzuki reaction. Our study revealed that aryl bromides and iodides bearing elec-

tron-neutral (entry 4 & 5), electron-withdrawing (entry 3 & 6) and electron-donating groups

(entry 2) underwent smooth coupling with phenylboronic acid and almost quantitative con-

version was obtained in all the cases. Interestingly, this high yields were also maintained when

phenylboronic acid was replaced with p-tolyl- or p-chloroboronic acid (Entry 7 & 8). More-

over, at an elevated temperature (80˚C) and with an extended reaction time our system can

also tolerates difficult substrates like sterically demanding 2-iodotoluene (entry 10) and

Fig 3. The high resolution spectrum of the starch-assisted PdNPs (Pd 3d region); inset: curve fitted 3d5/2 peak.

https://doi.org/10.1371/journal.pone.0184936.g003
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1-bromo-2,5-dimethoxybenzene (entry 11), or heteroaryl halides like 3-iodopyridine (entry

12) or 5-bromopyrimidine (entry 13) and provided the cross-coupling products in good-to-

excellent yields.It needs to mention that aturnover number (TON) close to 1000 was obtained-

with our catalyst for cross-coupling with a few aryl bromides in water,and this value is either

comparable[44] or superior [45]with some of the reported PdNPs-based catalysts that are

chemically synthesized. Unfortunately, despite good results with aryl bromides or aryl iodides,

our catalyst is not suitable for activating aryl chlorides as substrate (Entry 15 & 16).Noteworthy

to mention that usually aryl chlorides are difficult substrates to be activated in Suzuki reaction

because of stronger C-Cl bond compared to C-Br or C-I bond [9].

It may be important to note that one of the key advantages of NPs based catalytic system is

their potential recyclability, and to check this property, we have performed the reusability

experiment with our model system taking p-bromotoluene and phenylboronic acid as model

substrate Table 1. For handling convenience, we have performed the reaction with 10 mg cata-

lyst using proportionate amount of substrates, base and water. Our study revealed (Fig 4) the

nanocatalyst could be reused at least for four cycles; however a gradual decrease in yield was

observed which might be due to the handling loss of the catalyst during centrifugation. The

TEM pictures (Fig 5) of the reused catalyst showed almost similar morphology with no sign of

aggregations suggesting that the catalyst could be reused for further runs.

Fig 4. Suzuki-Miyaura reactionsa of various aryl/heteroaryl halides with arylboronic acids using PdNPs as catalyst.

https://doi.org/10.1371/journal.pone.0184936.g004

Table 1. Recycling of the catalyst for the reaction between 4-bromotoluene and phenylboronicacida.

Cycle Yieldb

1 95

2 92

3 91

4 89

aReaction condition: 4-bromotoluene (2.5mmol), phenylboronic acid (3.25 mmol), K2CO3 (7.5 mmol), H2O

(20 mL), Pd catalyst (10 mg); 50˚C
bIsolated yield.

https://doi.org/10.1371/journal.pone.0184936.t001

Fig 5. TEM images of the recycled catalyst showing lattice fringes corresponds to (111) plane of Pd NP.

https://doi.org/10.1371/journal.pone.0184936.g005
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Alcohol oxidation reaction

Oxidation of alcohols to carbonyl compounds is one of the most important reactions in

organic synthesis. Palladium-based catalysts, including Pd NPs,are particularly known to

promote this reaction under mild conditions using environmentally benign oxidants such as

O2, H2O2, tert-butyl hydrogen peroxide (TBHP), etc [11,46]. However, in the majority of the

cases, the reactions are usually conducted in organic solventsthat are not only toxic but also

Fig 6. Oxidation of selective alcohols in aqueous media catalyzed by PdNPs as catalyst.

https://doi.org/10.1371/journal.pone.0184936.g006
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expensive. With the bio-synthesizedPd NPs at hand, we have expanded the scope of the cata-

lyst for alcohol oxidation reactions using water as solvent. Initial study was performed at room

temperature using p-chlorobenzylalcohol as model substrate withTBHP as oxidant in presence

of K2CO3 as base using 3 mg of the Pd NPs. After a reaction time of 4h, only 19% p-chloroben-

zaldehyde was formed. However, on increasing the temperature to 80˚C, nearly quantitative

yield of product was obtained in 4h. Encouraged by this result, we have tested some more rep-

resentative alcohols for the oxidation reaction. Alcohols bearing electron-withdrawing groups

like p-nitrobenzylalcohol (Fig 6, Entry 5) or electron-donating groups like p-methybenzylalco-

hol (Fig 6: Entry 4) could be converted to corresponding aldehydes with moderate to high

yields. Our results showed that the position of substituent also have certain impacts on the per-

formance of the catalyst. For instance, oxidation of o-chlorobenzylalcohol gave 75% yield,

while under similar condition p-chlorobenzylalcohol gave 94% yield.

Reduction of Chromium(VI) to Chromium(III)

Chromium(VI) compound is considered to be one of the major pollutantscommonly found in

ground water at the industrial sites [47]. At present, various remediation strategies are avail-

able that can detoxify chromium, and one such method is the catalytic reduction of Cr(VI)

to Cr(III). Among various catalysts, NP-based systemsincluding Pd NPs are found to be par-

ticularly promising [48]. To investigate the effectiveness of our catalyst for this reaction, an

aqueous solution of K2Cr2O7 was treated with bio-synthesized Pd NPs in presence of formic

acid as reducing agent and the degradation of Cr(VI) to Cr(III) was monitored with UV-

Vis spectrophotometer. The aqueous solution of K2Cr2O7 exhibits a strong peak at 350 nm

which gradually decreases with time (Fig 7). Upon stirring the reaction for 40 min. this

peak finally vanishes indicating complete reduction of Cr(VI) to Cr(III) and the light yellow

colour of K2Cr2O7 solution changed to colourless. It is worth noting that under the same set of

experimental conditions, K2Cr2O7 and Pd(OAc)2 showed only 17 and 57% degradations

respectively.

Evaluation of anti-microbial activity against MDR isolate

The most potential MDR bacterial isolate (i.e. showing resistance against maximum number

of antibiotics viz., ampicillin, imipenem, tetracycline, and rifampicin) was identified as Crono-
bactersakazakiistrain AMD04 by 16S rDNA sequencing technique. The NCBI Gene Bank

accession no. KJ812198.1 was received for the novel isolate (ESI.S9 Fig). Antimicrobial activity

Fig 7. Cr(VI) reduction: (a) in absence of catalyst; (b) in presence of Pd(OAc)2 salt; (c) in presence of starch-assisted Pd NPs as catalyst.

https://doi.org/10.1371/journal.pone.0184936.g007
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of PdNPs was carried out by agar well diffusion method. Clear zone of inhibition with a diame-

ter of 31.67±1.53 mm around the well containing PdNPs in bacterial culture plate clearly con-

firm its bactericidal effect against the isolates (Fig 8). Whereas, aqueous plant extract and Pd

(OAc)2 solution show no effect against the isolate. The PdNPs exerted an MIC and MBC

of0.06mMand0.12mMrespectively against Cronobactersakazakii AMD04 (Fig 9) which was

measured spectrophotometricallyat an absorbance of 600 nm. It may be noted that although

bacterial growth can be measured at any of the visible light range, measuring the 600 nm peak

is a standard method of monitoring growth, as this wavelength corresponds to orange colour

and most bacterial cultures tend to grow orange as their culture grows more dense[49].These

MIC and MBC values aremuch lower than FDAoral tolerable daily intake for dosage forms

and components (i.e. 100μg/day) [50]. This finding makes PdNP a potential candidate for

using as a drug component to fight against MDR bacteria.

Fig 8. Figure showing clear zone of inhibition around the well containing Pd NPs confirm its antimicrobial

activity against MDR Cronobactersakazaki AMD04 strain; whereas the aqueous plant extract (PE) shows no

effect and Pd(OAc)2 shows minor effect against the isolate.

https://doi.org/10.1371/journal.pone.0184936.g008
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Biofilm inhibition activity by PdNPs

Antibacterial activity with chemically synthesized Pd NPs has been previously reported[35],

although reports on biofilm inhibition activity by Pd NPs have not been seen so far.We are

intrigued to see whether our biosynthesized PdNPs are able to eradicate biofilms which are

known to display high resistance to toxic doses of antimicrobial agents that usually eradicate

planktonic cells. It may be noted that inhibitory effects of metal nanoparticles (e.g. AuNPs,

[51] ZnO-NP[52], etc) on pathogenic biofilm formation is an active area of research that has

got many recent attentions. When tested the PdNPs against novel MDR clinical isolate Crono-
bactersakazakiistrain AMD04, it displayed significant decrease of biofilm biomass. The experi-

ment was done in triplicate and results are expressed in terms of mean ± S.D. Maximum

inhibition of biofilm was recorded at low concentration (0.26±0.02 mM) of PdNPs (Fig 10).

Comparable decrease in biomass formation was also observed at 0.39mM and 0.52mM con-

centrations. At concentrations below 0.26mM and above 0.65mMPdNP, Cronobactersakazakii
exhibited slight increase in absorbance. This increase in absorbance is due to the interference

caused by increased concentration of PdNPs. Most unremitting and relentless bacterial infec-

tions are associated with biofilm growth, a strategy that has accelerated the emergence and

Fig 9. Graph showing MIC and MBC of PdNPs against Cronobactersakazakii strain AMD04 at different time intervals.

https://doi.org/10.1371/journal.pone.0184936.g009
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hasty spread of multidrug resistant bacteria. It is well known that biofilm associated bacteria

are much more difficult to be eradicated by traditional bactericidal antimicrobials than plank-

tonic cells. Moreover the PdNPs exhibited their potential as biofilm inhibitor against novel

MDR clinical isolate CronobactersakazakiiAMD04.On the basis of literature report [51], a pro-

posed mechanistic pathway of biofilm inhibition by Pd NPs has been shown in (ESI.S10 Fig).

Planktonic bacterial cells adsorb on the substrate and attaches with each other by cell signaling

and subsequent release of exopolysaccharide (EPS) forming a protective matrix. Similar studies

carried out using AuNPs suggested that the increased stress exerted by nanoparticles on

microbial cells resulted in increased planktonic growth and decreased adhesion of microbes

on substrate.

Fig 10. Graph showing anti-biofilm effect of PdNPs against MDR clinical isolate Cronobactersakazakii strain AMD04.

https://doi.org/10.1371/journal.pone.0184936.g010
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Conclusion

In summary, we presented a green protocol of synthesizing PdNPs by using aqueous leaf

extract of GarciniapedunculataRoxb as bio-reductant. The PdNPs showed excellent activity as

catalyst for three important reactions namely the Suzuki-Miyaura cross-coupling reaction,

alcohol oxidation and reduction of Cr(VI) to nontoxic Cr(III). The Pd NPs also showed excel-

lent antimicrobial and anti-biofilm activities against a novel MDR clinical isolate Cronobacter-
sakazakii AMD04. The MIC and MBC values of Pd NPs are much lower than that of USP

administration limit for oral tolerable daily intake, which make these PdNPs potential drug

candidate to fight against MDR bacteria. The multifunctional applications along with ‘in

water’ reactions for both synthesis and catalysis are the main features of our catalyst.
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