CHEMISTRY LETTERS, pp. 2029-2032, 1987.

© 1987 The Chemical Society of Japan

Preparation of (Triphenylsilyl)allyl Anion and (Triphenylgermyl)allyl Anion from 1-Propenyltriphenylsilane and 1-Propenyltriphenylgermane and Their Reactions with Electrophiles

> Kuni WAKAMATSU, Koichiro OSHIMA,^{*} and Kiitiro UTIMOTO Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606

Treatment of l-propenyltriphenylsilane with n-BuLi in THF-HMPA provides (triphenylsilyl)allyl anion which is identical with an anion derived from 2-propenyltriphenylsilane and base. Generation of (triphenylgermyl)allyl anion is also described. Addition of alkyl halides or carbonyl compounds to these anions gives the corresponding adducts regioselectively.

l-Alkenylsilanes and 2-alkenylsilanes are recognized to be versatile synthetic intermediates and their use for the organic synthesis is widely studied.¹⁾ Allyltrialkylsilane is conveniently deprotonated by treatment with bases such as t-BuLi, n-BuLi, or t-BuOK/n-BuLi to give (trialkylsilyl)allyl anion which reacts with various electrophiles.²⁾ On the other hand, the reaction of l-alkenylsilanes with bases has been hardly investigated.³⁾ Here we wish to report that treatment of l-propenyltriphenylsilane with n-BuLi in THF-HMPA (10:1) gives the title α -silyl carbanion which reacts with electrophiles and carbonyl compounds to afford the corresponding adducts.

CH₃ <u>n-BuLi</u> SiPh₃ <u>GePh₃</u> SiPh₃ <u>n-BuLi</u> (GePh₃) (GePh₃)

Butyllithium (1.5 M hexane solution, $1 \text{ M} = 1 \mod \text{dm}^{-3}$, 0.8 ml, 1.2 mmol) was added to a solution of 1-propenyltriphenylsilane (0.30 g, 1.0 mmol) in THF (8 ml)-HMPA (0.8 ml) at -78 °C under an argon atmosphere. The color of the solution turned dark red immediately. Stirring was continued at this temperature for 30 min, then a solution of benzaldehyde (0.11 g, 1.0 mmol) in THF (2 ml) was added dropwise. The resulting mixture was stirred at -78 °C for 30 min and allowed to warm to 0 °C. Workup (AcOEt, 1.0 M HCl) followed by purification by thin layer chromatography on silica gel gave (E)-1-phenyl-4-triphenylsilyl-3-buten-1-ol (0.37 g, 90% yield).


Table 1. Reaction of (triphenylsilyl)allyl anion and (triphenylgermyl)allyl anion with various electrophiles

	CH ₃ <u>n-Bul</u> SiPh ₃ (GePh ₃)	-i	∕SiPh₃ _E [€] (GePh₃)	₽ _ E <	$(GePh_3)$ \longrightarrow SiPh ₃ + \longrightarrow SiPh ₃ $(GePh_3)$ E
Run	Starting material	Additive	e E ⁺	Y/%	Product
1	CH ₃ ^{a)}		D ₂ 0	78	D SiPh ₃ SiPh ₃ SiPh ₃ (1:2) D
2	\SiPh3		MeI	92	$Me \underbrace{SiPh_3}_{(1 : 2)} \underbrace{SiPh_3}_{Me}$
3			PhCHO	90	Ph SiPh ₃ In
4			PhCH=CHCHO	62	Ph OH SiPh ₃
5		MeMgI	n-C ₆ H ₁₃ CHO	72	n-C ₆ H ₁₃ SiPh ₃ <u>2a</u>
6		MeMgI	PhCOCH ₃	55	Me SiPh ₃
7	ь)	Et ₂ Zn	PhCHO	74	Ph 🔨
8	CH ₃ SiPh ₃		PhCHO	70	<u>1a</u>
9	CH ₃ c)		MeI	75	Me GePh ₃ GePh ₃ (3:7) Me
10	`Ge₽ħ₃		PhCHO	69	OH Ph CePh3 1b
11		n	-с ₆ н ₁₃ сно	65	OH n-C ₆ H ₁₃ GePh ₃ <u>2b</u>
12	CH ₃ GePh ₃		PhCHO	70	<u>1b</u> ^d
13		n	-с ₆ н ₁₃ сно	63	<u>2b</u>
14		Et ₂ Zn	PhCHO	72	Ph GePh ₃ <u>1b</u> d) PhCHOH
15	GePh ₃	n	-с ₆ н ₁₃ сно	70	(11 : 75 : 14) <u>2b</u>

a) Prepared from $CH_3CH=CHMgBr$ and Ph_3SiCl . E/Z = 6/4. b) Prepared by reduction of $CH_3C=CSiPh_3$ with i-Bu₂AlH. c) Prepared by hydrogermylation of propyne. d) E/Z = 4/1. e) see Ref. 4.

The representative results containing the reaction of (triphenylgermyl)allyl anion are summarized in Table 1. Several comments are worth noting. (1) Stereochemistry of the starting 1-propenyltriphenylsilane did not affect the Thus, both (E)-l-propenyltriphenylsilane and (Z)-isomer were easily reaction. deprotonated with n-BuLi to give the same allyl anion which is identical with the carbanion derived from 2-propenyltriphenylsilane.⁵⁾ (2) The reaction does not seem to vary significantly with the change of the substitution on silicon. For instance, an addition of n-BuLi to l-propenyltriethylsilane gave an allyl anion which afforded the corresponding adducts, (E)-l-phenyl-4-triethylsilyl-3buten-1-ol in 65% yield upon treatment with benzaldehyde. (3) (Triphenylgermyl)allyl anion was produced from l-propenyltriphenylgermane in similar fashion and easily reacted with electrophiles such as MeI and PhCHO. The same (triphenylgermyl)allyl anion was obtained on treatment of allyltriphenylgermane with n-BuLi (Run 15 in Table 1). (4) Regioselectivity of the reaction depends on the nature of the electrophile and counterion of the anion. Alkylation of allyllithium with methyl iodide gave a mixture of α - and γ -adducts, whereas the reaction with carbonyl compounds provided y-adducts exclusively. Change of the counterion to zinc increased the α -selectivity in the reaction with carbonyl compounds. (5) The double bonds of the produced alkenylsilanes or alkenylgermanes were exclusively trans⁶⁾ from ¹H NMR studies (J = ca. 19 Hz).

The adduct **2a** or **2b** was epoxidized to provide the corresponding α,β -epoxysilane **3a** or epoxygermane **3b**.⁷) Oxidation with PCC followed by treatment with (1) concd H₂SO₄ in MeOH and (2) aq. CH₃COOH⁸) gave δ -ketoaldehyde **5** which was converted into dihydrojasmone according to the reported procedure.⁹) Treatment of epoxide **3a** or **3b** with BF₃OEt₂ in MeOH^{2c}) gave lactol **7**.^{10,11})

References

- E. W. Colvin, "Silicon in Organic Synthesis," Butterworths, London (1981), Chap. 7 and 9; W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin (1983), Chap. 7 and 11; S. Pawlenko, "Organosilicon Chemistry," Walter de Gruyter, Berlin New York (1986), Chap. 4.
- 2) a) R. J. P. Corriu, J. Masse, and D. Samate, J. Organomet. Chem., <u>93</u>, 71 (1975);
 b) K. Yamamoto, M. Ohta, and J. Tsuji, Chem. Lett., <u>1979</u>, 713;
 c) E. Ehlinger and P. Magnus, J. Am. Chem. Soc., 102, 5004 (1980);
 d) R. J. P.

Corriu, C. Guerin, and J. M'boula, Tetrahedron Lett., 22, 2985 (1981); e) Y. Yamamoto, Y. Saito, K. Maruyama, ibid., 23, 4597 (1982); f) J. M. Muchowski, R. Naef, and M. L. Maddox, ibid., 26, 5375 (1985); g) K. Koumaglo and T. H. Chan, ibid., 25, 717 (1984); h) K. Tamao, E. Nakajo, and Y. Ito, J. Org. Chem., 52, 957 (1987).

- 3) The addition of Grignard reagents or organolithium compounds to the C-C double bond of vinylsilanes has been known to form a carbanion adjacent to silicon. C. F. Cason, H. G. Brooks, J. Am. Chem. Soc., <u>74</u>, 4582 (1952); G. R. Buell, R. Corriu, C. Guerin, and L. Spialter, ibid., <u>92</u>., 7424 (1970); K. Tamao, R. Kanatani, and M. Kumada, Tetrahedron Lett., <u>25</u>, 1905 (1984).
- 4) (E)-1-Triphenylgermyl-1-decen-4-ol (2b): bp 190 °C (bath temp, 2.0 Torr); IR (neat) 3400, 3080, 2940, 2860, 1620, 1490, 1440, 1100, 1000, 740, 700 cm⁻¹; H-NMR (CDCl₃, 200 MHz) δ 0.91 (bt, 3H), 1.23-1.55 (m, 10H), 1.60 (bs, 1H), 2.38 (ddd, J = 14.0, 7.5, 6.5 Hz, 1H), 2.51 (ddd, J = 14.0, 6.5, 5.0 Hz, 1H), 3.65-3.83 (m, 1H), 6.16 (dt, J = 18.5, 6.5 Hz, 1H), 6.40 (d, J = 18.5 Hz, 1H), 7.38-7.68 (m, 15H). Found: C, 73.54; H, 7.57%. Calcd for C₂₈H₃₄OGe: C, 73.24; H, 7.46%.
- 5) Three allylic anions derived from (E)-1-propenyltriphenylsilane, (Z)-isomer, and allyltriphenylsilane gave exactly same products upon treatment with alkyl halides or carbonyl compounds.
- 6) The reaction of (triphenylgermyl)allyl anion with PhCHO was an exception and gave a mixture of (E)- and (Z)-l-phenyl-4-triphenylgermyl-3-buten-l-ol (E:Z = 4:1).
- 7) **3b**: bp 190 °C (bath temp, 2.0 Torr); IR (neat) 3450, 3050, 2940, 2860, 1740, 1490, 1440, 1250, 1100, 870, 740, 700 cm⁻¹; H-NMR (CDCl₃, 200 MHz) δ 0.90 (bt, 3H), 1.23-2.13 (m, 13H), 3.03 (d, J = 3.0 Hz, 0.5H), 3.05-3.18 (m, 1H), 3.19 (d. J = 3.0 Hz, 0.5H), 3.75-3.95 (m, 1H), 7.35-7.65 (m, 15H). Found: C, 71.18; H, 6.79%. Calcd for C₂₈H₃₄O₂Ge: C, 71.08; H, 6.82%.
- 8) G. Stork and E. Colvin, J. Am. Chem. Soc., <u>93</u>, 2080 (1971).
- 9) K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., <u>95</u>, 4446 (1973).
- 10) Treatment of (Z)-1-triphenylsilyl-1-dodecene or (Z)-1-triphenylgermyl-1dodecene with n-BuLi followed by the addition of PhCHO gave the corresponding γ-adduct in only 15% or 18% yield along with the recovered starting material (60-70%) under the same reaction conditions.
- 11) Financial support by the Ministry of Education, Science, and Culture, Japanese Government (Grant-in-Aid for Special Project Research No. 61225011) is acknowledged.

(Received July 28, 1987)