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Abstract—Allyltrimethylsilane and trimethylsilyl cyanide undergo smooth addition to N-acylated quinolines in the presence of a
catalytic amount of iodine to afford 2-allyl- and 2-cyano-1,2-dihydroquinoline derivatives, respectively in good yields with high
chemo- and regioselectivity. A variety of functional groups such as alkyl, alkoxy, halo, and nitro functionalities are tolerated under
the reaction conditions.
� 2005 Elsevier Ltd. All rights reserved.
Addition reactions of organometallic reagents to acti-
vated aza-aromatics, generated in situ by chlorofor-
mates or acyl chlorides, are of great importance in
organic synthesis, especially for the synthesis of biologi-
cally active alkaloids.1 Among the methods used, allyla-
tion and cyanation of activated aza-aromatics are
important methods for syntheses of quinoline and
isoquinoline analogs.2 Organometallic reagents such as
allyltin, allylindium, and allylsilanes have been used
extensively to introduce allylic functionality into these
nitrogen heterocycles.3–5 However, many of these meth-
ods involve the use of toxic tin compounds, expensive
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reagents, and require a stoichiometric amount or even
an excess of the Lewis acid to obtain reasonable reaction
rates and acceptable yields of products. Furthermore,
allylindium or allylmagnesium reagents are reported to
produce a mixture of a- and c-allylated products.6 There
is still scope to develop a simple and efficient method for
the allylation and cyanation of N-acylated aza-aromat-
ics using less toxic and easily handled allylsilanes.

In continuation of our interest in catalytic applications
of elemental iodine for organic transformations,7 we re-
port herein a mild and convenient method for the allyl-
ation of both activated quinolines and isoquinolines using
elemental iodine as catalyst. Initially, we attempted the
allylation of N-acylated quinoline 1, generated by ethyl
chloroformate, with allyltrimethylsilane 2 in the pres-
ence of 10 mol % of elemental iodine. The reaction went
to completion in 2.5 h and the product, 2-allyl-1,2-dihy-
droquinoline 3a was obtained in 85% yield (Scheme 1).
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Table 1. I2-Catalyzed allylation and cyanation of aza-aromatics activated by chloroformate

Entry Quinolines Producta Yield (%)b Time (h) Refs.

(a)

N
CO2C2H5

N

3a

84 2.5 4a

(b)
N CO2C2H5

N CN

3b
80 3.0

(c) N
CO2C2H5

N

(CH3)3Si

4a

75 2.5 4a

(d) N
N

CN
CO2C2H5

3c

82 3.0

(e)
N

CH3
N
CO2C2H5

CH3

3d

80 2.5 4a

(f)
N

CH3
N CN
CO2C2H5

CH3

3e

75 3.0

(g)
N

CH3
N
CO2C2H5

CH3

3f

81 2.5

(h)
N

CH3
N CN
CO2C2H5

CH3

3g

72 3.5

(i)
N

Br
N
CO2C2H5

Br

3h

70 2.5 4a

(j)
N

Br
N
CO2C2H5

Br

CN

3i

67 3.5

(k)
N

MeO
N
CO2C2H5

MeO

3j

79 3.5 4a

(l)

N

NO2

CO2C2H5

N

NO2

(CH3)3Si

4b

65 2.5 4a

(m)

N

NO2

NO2

N CO2C2H5
CN

3k

72 4.0

(n)
N

O2N
N
CO2C2H5

O2N

3l

70 3.0 4a

a All products were characterized by 1H NMR, IR, and mass spectroscopy.
b Isolated yields after purification.
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Similarly, several substituted quinolines reacted
smoothly with allyltrimethylsilane to produce the corre-
sponding 2-allyl-1,2-dihydroquinoline derivatives. In all
cases, the nucleophilic addition took place selectively at
the 2-position of the quinoline whereas 2- and 4-allyl-
ated products are formed when allyl Grignards are used.
Encouraged by the results obtained with quinolines, we
turned our attention to isoquinolines. Interestingly,
N-acylated isoquinolines underwent smooth addition
with 2 equiv of allyltrimethylsilane leading to the forma-
tion of benzoisoquinuclidines4a as a 1:1 mixtures of
invertomers (4) (Scheme 2).

The mono-allylated products were not observed by
NMR. The formation of benzoisoquinuclidine from an
isoquinoline was consistent with the literature.4 Like all-
ylsilane, trimethylsilyl cyanide (TMSCN) also reacted
efficiently with N-acylated quinolinium and N-acylated
isoquinolinium ions to give 2-cyano-1,2-dihydroquino-
line and 1-cyano-1,2-dihydroisoquinoline derivatives,
respectively (Table 1, entries b, d, f, h, j, and m). In all
cases the reactions proceeded smoothly at ambient
temperature with high regioselectivities. No 4-substi-
tuted adduct normally formed by Grignard reagents
was obtained under these reaction conditions. The
products were characterized by 1H NMR, IR, and mass
spectroscopy9 and by comparison with authentic
compounds.4a Dichloromethane is the solvent of choice.
This method is useful for the allylation of both electron-
rich and electron-deficient quinolines. The results of the
allylation and cyanation of both quinolines and isoquin-
olines, are presented in Table 1.8 Although the reaction
was successful with a catalytic amount of TMSI, the
products were obtained in comparatively low yields
(50–65%) after longer reaction times (6–10 h). Thus,
the combination of allyltrimethylsilane and iodine is
better.

In summary, we have described in efficient method for
the allylation and cyanation of quinolines and isoquinol-
ines activated by ethyl chloroformate using elemental
iodine as catalyst.
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