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Abstract – A novel methodology for the synthesis of substituted isoquinolines 

via a nickel(0)-catalyzed [2+2+2] cycloaddition of 3,4-pyridynes with two 

molecules of alkyne has been established.  In this reaction, it was found that 

2-butyn-1,4-diol derivatives and 1,3-diynes are suitable as substrates and that a 

propargylic oxygen functionality in alkynes is essential for the reactivity and the 

selectivity of the products.

A transition metal-catalyzed [2+2+2] cycloaddition of three components of alkynes is a useful and highly 

atom-economic way for constructing various aromatic compounds.   Recently, we have succeeded in 

developing the first transition metal-catalyzed [2+2+2] cycloaddition of pyridynes with diynes by virtue 

of a nickel(0) catalyst (Scheme 1).2,3 
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Scheme 1.  Previous study on Ni(0)-catalyzed [2+2+2] cycloaddition of 3,4-pyridynes
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The reaction of , -diynes 1 and 3,4-pyridyne precursors 2 or diynes 3 having a 3,4-pyridyne precursor 

moiety in the chain with a zerovalent nickel catalyst in the presence of CsF gave the corresponding 

tricyclic isoquinolines 4 or tetracyclic isoquinolines 5, respectively, in good yields.  In the context, we 

planned to develop the synthesis of substituted isoquinolines via a [2+2+2] cycloaddition of 3,4-pyridynes 

with two molecules of alkynes, as shown in Scheme 2.  If a [2+2+2] cycloaddition of two molecules of 

alkyne 6 and 3,4-pyridyne 2’ derived from the precursor 2 in the presence of a fluoride anion proceeds in 

a similar to that in the previous study shown in Scheme 1, substituted isoquinoline derivative 7 should be 

produced.  By using alkynes as a substrate instead of diynes in the [2+2+2] cycloaddition, it would be 

more difficult to control the stereochemistry of the product 7 and to prevent the formation of trimers 8 

and polymers of alkynes.  Thus, this would be a more challenging subject than previously reported 

cases. 
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First, a [2+2+2] cycloaddition of 3,4-pyridyne and two molecules of acetylene (6a) was examined (Table 

1, run 1).  Treatment of 2a with 20 mol% Ni(cod)2 and 40 mol% PPh3 in the presence of CsF (3 

equivalents to 2a) under an atmosphere of acetylene (6a, 1 atm) in CH3CN at room temperature gave 

isoquinoline (7aa) in 40% yield accompanied by the formation of unidentified polymers.  Various 

symmetrical di-substituted alkynes were screened as a coupling partner instead of acetylene under 

conditions similar to those previously reported, and it was found that 2-butyn-1,4-diol derivative 6b could 

be applied to the nickel-catalyzed [2+2+2] cycloaddition of 3,4-pyridyne precursor 2a.  Thus, the 

reaction of 6b and 2a (ratio of 6b/2a=1/4) with 20 mol% Ni(cod)2 and 40 mol% PPh3 in the presence of 

CsF (3 equivalents to 2a) in CH3CN at room temperature gave the corresponding isoquinoline derivative 

7ba in 60% yield (run 2).  When the ratio of the substrates 6b and 2a was changed from 1/4 to 4/1, the 

yield of 7ba was improved to 72% (run 3).  It was found that loading of the nickel catalyst could be 

reduced to 10 mol% without lowering of the yield under the conditions, producing 7ba in 73% yield (run 

4).  On the other hand, the yield of 7ba was decreased to 51% when the catalyst loading was reduced to 

5 mol % (run 5).  When non-protected 2-butyn-1,4-diol (6c) was used as an alkyne substrate, no desired 
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product 7ca was obtained (run 6).  On the other hand, the reaction of 6d, having two THP groups as 

protecting groups, and 2a under the same conditions gave isoquinoline 7da in 70% yield (run 7).  The 

existence of a carbonyl group in the protecting groups also retarded the reaction, and the reaction of 6e or 

6f under the same conditions gave the corresponding product 7ea or 7fa, respectively, in a low yield (runs 

8 and 9). 

 

20 mol% Ni(cod)2
40 mol% PPh3

CsF (3 eq. to 2a)
MeCN, rt

N

Et3Si

TfO

2a

N

7

+

1b

2

alkyne (6) product (7)

N

MOMO

OMOM

a All reactions except for run 1 were carried out as follows: a solution of 6 was added 
over a period of 3 h to a mixture of 2a, Ni(cod)2, PPh3, and CsF, and the resultant 
mixture was stirred for an additional 2 h.  b The reaction was carried out under an 
atmosphere of acetylene (1 atm).  c Based on 2a.  d Based on 6.  e 10 mol% Ni(cod)2 
and 20 mol% PPh3 were used.  f 5 mol% Ni(cod)2 and 10 mol% PPh3 were used.

Table 1.  [2+2+2] Cycloaddition of alkynes 6 and 2aa
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Next, unsymmetrical alkynes having a propargylic oxygen functionality such as 6g-6i (Figure 1) were 

screened in the [2+2+2] cycloaddition with 2a under the similar conditions, producing none or a trace 

amount of desired isoquinolines as a mixture of isomers.  After various attempts, it was found that 

1,3-diyne 6j showed a good reactivity and selectivity.4  Thus, the reaction of 6j and 2a under the 

optimized conditions gave the corresponding isoquinoline derivative 7ja as a single isomer in 60% yield 

along with a mixture of unidentified polymers (Table 2, run 1).  The stereochemistry of 7ja was 

unambiguously determined by NOE experiments after assignment of the related protons using 1H NMR, 
13C NMR, and HMBC spectra (Figure 2).  The reactions of 1,3-diynes 6k-6n under the same conditions 
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also produced isoquinolines 7ka-7na as single isomers (Table 2, runs 2-5), and those stereochemistries 

were determined in a manner similar to that in the case of 7ja by NOE experiments. 
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Table 2.  [2+2+2] Cycloaddition of 1,3-diynes and 2aa

AcO
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a All reactions were carried out as follows: a solution of alkyne 6 (4 eq. to 
2a) was added via a syringe pump over a period of 3 h to a mixture of  2a, 
Ni(cod)2 (10 mol%), PPh3 (20 mol%), and CsF (3 equiv. to 2a) in MeCN at 
room temperature, and the resulting mixture was stirred for an additional 2 
h.  b The stereochemistries of products 7ja-7na were determined by NOE 
experiments between H1 and Ha, and H4 and Hb, respectively (see, Figure 
2).

1

2

3

4

5

alkyne (6) product (7)b

60
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46

61

57

7ka

7la

7ma
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yield (%)run

 

It is noteworthy that all products in these cases were always obtained as a single isomer, with unreacted 

alkyne parts of the starting 1,3-diynes 6j-6n located at C6- and C7-positions and protected 

hydroxymethyl moieties located at C5- and C8-positions in the isoquinoline rings of the products 

7ja-7na. 
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We next turned our attention to the scope of 3,4-pyridynes in the [2+2+2] cycloaddition.  The results of 

reactions of 6b with various 3,4-pyridyne precursors 2 are summarized in Table 3. 
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Table 3.  Scope of 3,4-pyridyne precursors in the [2+2+2] cycloaddition with 6b
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The reaction of 6b and 2b, which has a pivaloyloxymethyl group at the C2 position of the pyridine ring, 

under the above-described optimal conditions gave the corresponding isoquinoline 7bb in 80% yield 

(Table 3, run 1).  Electron-donating groups such as a methoxy group on the pyridyne precursor are 

tolerated in the [2+2+2] cycloaddition, and the reaction of 2c or 2d with 6b produced the corresponding 

isoquinoline 7bc or 7bd in 81% or 80% yield, respectively.  On the other hand, in the case of 2e having 

an electron-withdrawing group, the yield of the product 7be was lowered to 10%. 

The scope of 3,4-pyridynes in the [2+2+2] cycloaddition of 1,3-diynes was also investigated, and the 

results of the reaction with 6k and 6m are summarized in Table 4.  The reaction of 1,3-diyne 6k and the 

precursor 2b, 2c, or 2d under the optimized conditions produced the corresponding isoquinoline 7kb, 7kc, 

or 7kd as a single isomer in 72%, 70%, or 74% yield, respectively (runs 1-3).  In the case of the reaction 
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of 2b, 2c, and 2d with 6m under the same conditions, the isoquinolines 7mb, 7mc, and 7md were again 

produced as a single isomer in good yields, respectively (runs 4-6). 

10 mol% Ni(cod)2
20 mol% PPh3
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Table 4. Scope of 3,4-pyridyne precursors in the [2+2+2] cycloaddition of 1,3-diynes
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The stereochemistries of 7kb, 7kd, 7mb, and 7md were determined in a similar manner by NOE 

experiments (Figure 3).  On the other hand, 7kc and 7mc were successfully converted to 7ka and 7ma 

via conversion of the C1-methoxy group to a chloride5 (Scheme 3), the spectral data of which were 

identical to those obtained by the experiments described in Table 2.  Notably, in these cases, the same 

tendency as that in the above-mentioned reactions in Table 2 was observed for the stereochemistry 

concerned the alkyne moieties and the protected hydroxymethyl moieties in the products. 
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A possible mechanism of the [2+2+2] cycloaddition of 3,4-pyridyne and two molecules of alkynes is 

shown in Scheme 4.  On the basis of the results described above, it is obvious that the existence of a 

propargylic oxygen functionality in alkynes 6 is crucial to enhance the reactivity and to control the 
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selectivity of the products in this nickel(0)-catalyzed [2+2+2] cycloaddition with 3,4-pyridiynes.6  Thus, 

the oxygen at a propargylic position of 6 would initially coordinate to a nickel complex and form the 

nickel complex I.  Then oxidative addition would proceed to produce nickelacyclopentadiene 

intermediate II in a stereoselective manner.  Insertion of 3,4-pyridyne 2’, generated in situ from the 

precursor 2 and CsF, into the nickel-carbon bond of II would afford seven-membered nickelacycle 

intermediate IIIa or IIIb, from which reductive elimination would proceed to stereoselectively produce 

substituted isoquinoline 7. 
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Scheme 4.  chanism for [2+2+2] cycloaddition of 3,4-pyridynes and two molecules of alkyne

 

In summary, we succeeded in developing a novel methodology for the synthesis of substituted 

isoquinolines via a nickel(0)-catalyzed [2+2+2] cycloaddition of 3,4-pyridynes with two molecules of 

alkyne.  Through screening of various alkynes, 2-butyn-1,4-diol derivatives and 1,3-diynes were found 

to be suitable as substrates for this [2+2+2] cycloaddition.  It was also found that a propargylic oxygen 

functionality in these alkynes is essential for the reactivity and the selectivity of the products in the 

reaction.  Further studies along this line are in progress. 
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