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Palladium-Catalyzed Direct Decarbonylative Phosphorylation of 

Benzoic Acids with P(O)–H Compounds** 

Ji-Shu Zhang,[a] Tieqiao Chen,*[a,b] and Li-Biao Han*[c,d] 

 

Abstract: A direct decarbonylative phosphorylation of benzoic acids 

catalyzed by palladium was disclosed. Under the reaction conditions, 

a wide range of benzoic acids coupled readily with all the three kinds 

of P(O)–H compounds, i.e. secondary phosphine oxides, H-

phosphinates and H-phosphonates, producing the corresponding 

organophosphorus compounds in good to high yields. This reaction 

could be conducted at a gram scale and applied in the late-stage 

phosphorylative modification of carboxylic acids drug molecules. 

These results well demonstrated the potential synthetic value of this 

new reaction in organic synthesis. 

Due to the novel physical and chemical properties, 

organophosphorous compounds are highly valuable chemicals 

that are widely used in medicinal chemistry,[1] catalysis and 

organic synthesis,[2,3] coordination chemistry[4] and material 

science.[5] The development of an efficient method for the 

synthesis of an organophoshorus compound under mild 

conditions is of current concern. A lot of organophosphorus 

compounds have been prepared through transformation of 

organohalides or pseudo halides, such as the nucleophilic 

substitutions reactions or Michaelis-Arbusov reactions under a 

rather harsh condition (Scheme 1A, paths 1 and 2).[6,7] The 

Hirao-type’s coupling is also a well-employed method for 

constructing C–P bonds (Scheme 1A, path 3).[8,9] An aromatic 

C–H/P(O)–H cross dehydrogenation coupling was accomplished 

by Yu and co-workers, despite requiring a N-heterocycle-

directing group and (or) an over-stoichiometric oxidant.[10] 

Carboxylic acids are available at low cost in great structural 

diversity from both natural and synthetic sources and their 

application in organic synthesis has attracted much 

attention.[11,12] Direct utilization of carboxylic acids instead of 

organohalides to couple with P(O)–H compounds would greatly 

promote the green synthesis of organophosphorus compounds. 

In 2014, Xiao disclosed a Pd/Ag co-catalyzed decarboxylative 

coupling of electron-deficient o-nitrobenzoic acids with H-

phosphonates (Scheme 1B, path 4).[12b] This reaction was 

conducted under microwave conditions with the use of LiNO3 as 

an oxidant. Despite the high reaction rate, low yields (<65%) and 

narrow substrate scope were suffered. Subsequently, transition 

metal-catalyzed decarbonylative phosphorylations of aromatic 

carboxylate esters and amides with P(O)–H compounds were 

achieved under relatively harsh conditions (>150 °C) (Scheme 

1B, path 5). In the two reactions, pre-synthesis of starting 

carboxylic derivatives was required, stoichiometric byproducts  

 

Scheme 1. Construction of aromatic sp
2
C–P bonds. 

phenol and piperidine-2,6-dione were also generated 

concomitantly.[13] Very recently, we reported a Pd-catalyzed 

oxidative decarbonylative coupling of aroylhydrazides with P(O)–

H compounds under a strong acidic condition, producing the 

corresponding aryl phosphorus compounds (Scheme 1B, path 

6).[14] 

 

Scheme 2. Constructing chemical bonds via in situ activation of benzoic acids. 

In 1990s, Prof. Yamamoto firstly introduced an in situ 

activation strategy of carboxylic acids with anhydrides for 
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oxidative addition to Pd-catalysts, achieving the hydrogenation 

to aldehydes.[15a] This concept was subsequently extended to 

the synthesis of ketones.[15b–f] With the strategy, decarbonylative 

eliminations of fatty acids forming alkenes were also achieved 

by chemists.[15g–h] The in situ activation strategy was also 

employed in the decarbonylation couplings of benzoic acids with 

alkenes, arylboroxines, diboroxines, aromatics bearing N-

heterocycle and hydrosilanes mediated by nickel, rhodium and 

palladium (Scheme 2A).[16] We envision that if the in situ 

activation strategy is applied in the cross coupling of carboxylic 

acids with P(O)–H compounds, a decarbonylation 

phosphorylation might be realized out through transition metal 

catalysis. This reaction would avoid the pre-transformation of 

acids into active carboxylic derivatives and the use of oxidant 

which usually leads to oxidation of P(O)–H compounds in the 

oxidative couplings, thus providing an efficient method for 

constructing P–C bonds. After extensive studies,[17] we achieved 

such a reaction through palladium catalysis. This reaction used 

Boc2O as the activating reagent and was performed under a 

relatively mild reaction condition (115 oC). A wide substrate 

scope for both benzoic acids and P(O)–H compounds was 

demonstrated. This reaction provided a general method for 

sp2C–P bonds formation (Scheme 2B). It should be noted that 

Szostak and co-authors reported a similar reaction with the use 

of Piv2O as an activating reagent during the submission.[18] 

Compared with our catalytic system, the reaction was conducted 

at a higher temperature (160 oC) and seemed to be only 

applicable to H-phosphonates and Ph2PH. 

 

Table 1. Optimization of reaction conditions
 [a]

 

 
[a] 

Reaction conditions: a mixture of 1a (0.12 mmol), Ph2P(O)H (0.1 mmol), 10 

mol % Pd catalyst, phosphine ligand (Pd/P =1:2), 1.4 equiv (Boc)2O, 2.0 equiv 

base was heated in 1 mL solvent at the indicated temperature for 18 h. 
[b]

 
31

P 

NMR yield using methyldiphenylphine oxide as an internal standard. 
[c]

 5 mol% 

Pd2(dba)3. 
[d]

 5 mol % Pd(OAc)2. 
[e]

 (PivO)2O was used instead of (Boc)2O. 

 

We carried out the reaction by choosing 2-naphthoic acid 

with diphenylphosphine oxide as the model reaction. In the 

presence of 10 mol % Pd(OAc)2/dppp (1,3- 

bis(diphenylphosphino)propane), a mixture of 2-naphthoic acid, 

diphenylphosphine oxide, CyNMe2 and (Boc)2O was heated in 

dioxane[16] at 115 °C for 18 h. To our delight, 2-

naphthylphosphine oxide 3a was obtained in 72% yield (Table 1, 

entry 1). Both Pd catalyst and phosphine ligand were essential. 

Without either of them, the reaction proceeded sluggishly (Table 

1, entries 2 and 3). Lowering or elevating the reaction 

temperature decreased the yield of 3a (Table 1, entries 4 and 5). 

The choice of a suitable base was also crucial to this reaction. 

The yields were low with Cy2NMe and Et3N, while almost no 

reaction could be observed with DBU, K2CO3 and Cs2CO3 (Table 

1, entries 6–10). The reaction also took place readily in toluene 

and cyclohexane, but poorly in the strongly polar DMF, DMAc 

and t-AmylOH (Table 1, entries 11–15). The phosphine ligands 

were subsequently screened (Table 1, entries 16–22). When 

dppb (1,4-bis(diphenylphosphino)butane) was used, 39% yield 

of 3a was obtained. Other selected phosphine ligands, such as 

dcype (1,2-bis(dicyclohexylphosphino)ethane), dppm 

(bis(diphenylphosphino)methane), dppe (1,2-bis(diphen-

ylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)-

ferrocene), dpph (1,6-bis(diphenylphosphino)hexane) and Ph3P, 

all were ineffective for the decarbonylative phosphorylation. 

When 5 mol% Pd(OAc)2 was loaded, the yield decreased to 62% 

(Table 1, entry 23). Zero valent Pd catalyst like Pd2(dba)3 could 

also mediate the coupling reaction (Table 1, entry 24). Finally, 

anhydride (PivO)2O was used instead of (Boc)2O, a relatively low 

yield was afforded (Table 1, entry 25).[16] 

With the optimal conditions in hand, we then investigated 

the substrate scope. As shown in Table 2, this reaction was a 

rather general method, since various carboxylic acids including 

some drugs were readily decarbonylatively phosphorylated, 

producing the corresponding aryl phosphorus compounds in 

moderate to high yields. Thus, both 1-naphthoic and 2-naphthoic 

acids coupled with Ph2P(O)H, furnishing the expected coupling 

products 3a–3c in good yields. Polycyclic carboxylic acids 

served well under the reaction conditions (3d–3f). Good yields 

were also obtained with the heterocyclic substrates (3g–3k). By 

slightly tuning the reaction conditions, both electron-rich and 

electron-deficient benzoic acids including those bearing 

functional groups at the ortho-position underwent 

decarbonylative phosphorylation with Ph2P(O)H, delivering the 

corresponding products 3l–3w in moderate to good yields. 

Functional groups such as Me, Ph, PhO, MeO, CF3O, acetal, 

ester, carbonyl, methylsulfonyl and even chloro groups all  

 

Scheme 3. Gram-scale reaction. 

survived well under the current reaction conditions. The 

carboxylic acid drugs such as Probenecid, Flavonoid, 
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Bexarotene and Adpalene also proved to be good coupling 

partners (3x–3aa). However, under the reaction conditions, 

cinnamic acid showed poor reactivity (3ab), while no reaction 

took place with 3-phenylpropanoic acid (3ac). 

All the three kinds of hydrogen phosphoryl compounds were 

applicable to this reaction (Table 2B). In addition to Ph2P(O)H, 

other aromatic secondary phosphine oxides including the bulky 

di(2-naphthyl)2P(O)H all produced the expected phosphine 

oxides in moderate to good yields under similar reaction 

conditions (3ad–3ag). Similarly, the present Pd-catalyzed 

decarbonylative phosphorylation also took place smoothly with 

 

Table 2. Substrate scope
 [a]

 

 
[a]

 Reaction conditions: a mixture of 1 (0.48 mmol), Ph2P(O)H (0.4 mmol), 10 mol % Pd(OAc)2/dppp, 1.4 equiv (Boc)2O, 2.0 equiv CyNMe2 was heated at 

115 °C in 3 mL dioxane for 18 h; isolated yield. 
[b]

 1.5 equiv (Boc)2O, 2.5 equiv CyNMe2. 
[c]

 105 °C. 
[d]

 130 °C. 
[e]

 1.5 equiv (Boc)2O, 3 equiv CyNMe2, 90 °C. 
[f]
 

Names of starting carboxylic acid drugs. 
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aliphatic secondary phosphine oxide, hydrogen phosphinate and 

hydrogen phosphonates (3ah–3an). Worth noting is that the 

phosphorylated products from drugs with hydrogen phosphinate 

and hydrogen phosphonates could be easily hydrolyzed to the 

corresponding phosphinic acid and phosphonic acids, which 

might efficiently adjust the bioactivity of drugs.[19] This reaction 

provided an efficient method for phosphorylative modification of 

carboxylic acid drugs through decarbonylative C–C(O)/P(O)–H 

coupling. Diphenylphosphine showed a low reactivity and gave 

the coupling product triphenylphosphine in 25% GC yield (3ao). 

Of note, this reaction could be conducted at a gram scale 

without decrease of the reaction efficiency, demonstrating its 

potential synthetic value in organic synthesis (Scheme 3). For 

instance, a mixture of Flavonoid (6.0 mmol, 1.68 g), 

diphenylphosphine oxide (5.0 mmol, 1.01 g), Pd(OAc)2 (10 

mol %, 112.0 mg), dppp (10 mol %, 206.2 mg), (Boc)2O (1.4 

equiv, 1.6 mL), and CyNMe2 (2.0 equiv, 1.5 mL) was heated in 

20 mL dioxane at 115 °C for 18 h. After removal of the volatiles 

in vacuum, the residues were passed through a short silica 

column (eluent: petroleum ether/ethyl acetate) to give the 

analytically pure product 3y in 62% isolated yield. 

The reaction mechanism is not thoroughly clear at present. 

On the basis of previous literatures, we proposed a plausible 

catalytic circle as shown in Scheme 4.[16a,l–n,17,20–22] Pd(OAc)2 is 

first reduced to generate an active Pd(0) species A, which 

oxidatively adds to a mixing anhydride B generated in situ from 

(Boc)2O and the starting carboxylic acids,[16m] yielding an 

complex C. The resulting C undergoes decarbonylation,[13a,14,20] 

followed by ligand exchange to give intermediate E.[17,21,22] 

Reductive elimination of intermediate E produces the 

phosphorylated product and regenerates the active Pd(0) 

catalyst,[23] thereby completing the catalytic circle. 

 

Scheme 4. Proposed reaction mechanism. 

In summarize, we disclosed a Pd-catalyzed direct 

decarbonylative coupling of benzoic acids with P(O)–H 

compounds. The reaction utilized (Boc)2O to activate carboxylic 

acids in situ, avoiding pre-conversion of them into the active 

carboxylic derivatives and the use of stoichiometric oxidant. 

Under the reaction conditions, a variety of aryl phosphorus 

compounds were produced in moderate to excellent yields. The 

gram-scale experiments and further applications in the 

phosphorylative modification of drugs like Probenecid, Flavonoid, 

Bexarotene, Adapalene and Telmisartan well demonstrated the 

potential synthetic value of this new reaction in organic synthesis. 

Experimental Section 

A general procedure: in a glove box, 0.48 mmol 2-naphthoic acid, 0.52 

mmol HP(O)Ph2, 10 mol % Pd(OAc)2/dppp, 1.4 equiv (Boc)2O, 2.0 equiv 

CyNMe2, and 3 mL dioxane were charged into a 25 mL glass tube, the 

mixture was stirred at 115 °C for 18 h. After removal of the volatiles in 

vacuum, the residues were passed through a short silica column using 

petroleum ether/ethyl acetate as eluent to afford analytically pure product 

3a in 72% yield. 
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A direct decarbonylative 

phosphorylation of benzoic acids 

catalyzed by palladium was disclosed. 

Under the reaction conditions, a wide 
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carboxylic acids drug molecules. 

These results well demonstrated the 

potential synthetic value of this new 

reaction in organic synthesis. 
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