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Intramolecular insertion of alkene and alkyne into C–H 

bonds is an ideal annulation reaction in organic synthesis.
1
 

This type of reactions is promoted by a transition-metal or 

Lewis acid catalyst. In view that indenes are an important 

structural motif as the ligand of metal complexes
2
 as well as 

organic materials
3
 and bioactive molecules,

4
 many 

preparative methods have been developed.
5,6,7

 Among all, an 

intramolecular hydroarylation of propargylarenes is one of a 

simple and effective entry to synthesis of indenes,
6,7
 as the 

starting materials are easily accessed by the reaction of 

benzylic electrophiles with acetylide nucleophiles. However, 

a functional group bound to the propargyl moiety often 

migrates or is lost during the catalytic reactions.
6
 Thus, 

simple annulation free from migration of functional groups 

remains the target of present study.
7
  

During the course of our study for a combination of 

alkynes with a palladium catalyst for C–H bond 

activation,
8,9
 we have recently found that aryl(oxyethynyl)-

silanes undergo an intramolecular anti-hydroarylation via 

ortho-C–H bond activation using a palladium/carboxylic 

acid catalyst to give benzosiloles (Figure 1A).
9c,9e

 We 

assume that this catalytic system is applicable to the 

synthesis of indenes without migration of functional groups. 

Furthermore, toward future synthetic applications, we 

focused on indene derivatives having an oxyfunctional 

group as a reactive functional group at C1 and C3 positions. 

Herein we report an intramolecular anti-hydroarylation of 

oxypropargylarenes under the palladium/carboxylic acid 

catalyst (Figure 1B).  

Based on our previous reports on anti-hydroarylation,
9c
 

we exposed 3-methoxy-3,3-diphenyl-1-(2,6-iPr2-C6H3O)-1-

propyne (1a) to the Pd(dba)2/PCy3/tBuCO2H catalytic 

conditions. To our delight, desired anti-hydroarylation 

proceeded to give 1-methoxy-1-phenyl-indene 2a in good 

yield (Table 1, Entry 1). Further migration of functional 

groups as the major concern was not observed, whereas a 

small amount of ester 3a was generated via an elimination 

of methoxy group from 1a. The structure of 2a was 

unambiguously determined by X-ray crystallographic 

analysis (Figure 2A). In the absence of the carboxylic acid, 

the reaction did not occur at all (Entry 2). When  
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 Figure 1.  Intramolecular anti-hydroarylation via ortho-C–H bond 

activation to form 5-membered cycles 

 

Pd(OC(O)tBu)2 was used as the catalyst instead of Pd(dba)2 

and tBuCO2H, 2a was produced only in slightly lower yield 

(Entry 3). Thus, we have decided the conditions in Run 1 

are optimum. The anti-hydroarylation proceeded even on a 

preparative gram-scale, and 2a was successfully obtained in 

81% yield (1.23 g from 3.8 mmol of 1a) (Entry 4). The 

substituent effect at alkynyl carbon was remarkable: starting 

material 1b or 1c with a less bulky aryloxy group like 2,5-

xylyl or 3,5-xylyl produced indene 2b or 2c in a lower yield 

(Entries 5 and 6). In addition, carbon analog 1d did not give 

any annulation product at all. These observations are 

parallel to those of our benzosilole formation.
9c
  

The scope of the substrate was next examined. 

Substrate 1e having two electron-deficient p-fluorophenyl 

groups at the propargyl carbon did not affect the reactivity 

(Entry 7). On the contrary, 1f containing two electron-rich 

p-tolyl groups gave 2f in a much lower yield (Entry 8). 

Addition of equal amount of the catalysts (totally double 

amounts) slightly improved the yield (Entry 9). Similarly, 

1g substituted with a methyl group on the propargyl carbon 

afforded 2g in only a low yield (Entry 10).
10
 The reactivity 

change is attributed to the methoxy group at the propargyl 

carbon. Electron-donating substituents on the same position 

promote the elimination of the methoxy group due to 

stabilizing the carbocation form, thereby lowering the yield 

of indenes 2. Also, 1h having one phenyl group on the 

propargyl carbon afforded a complex mixture. Thus, two 

electron-withdrawing substituents at the propargylic carbon 

are essential for the successful reaction, as seen in the 

cyclization of ethyl 2-phenyl-3-butynoate 1i which gave 2i 

in an excellent yield (Entry 11).
11
 Trifluoromethyl-

containing propargyl substrates 1j and 1k were similarly 

converted into the corresponding indenes 2j and 2k 

respectively (Entries 12 and 13).  

 

 

Synthesis of Indenes by Intramolecular anti-Hydroarylation of Propargylarenes 

An intramolecular anti-hydroarylation of propargyl-
arenes proceeds smoothly with a palladium/carboxylic acid 
catalyst to form indenes straightforwardly. Indenes having 
various functional groups were easily prepared. The novel 
synthetic method is applicable to double hydroarylation to 
form a 1,5-dihydro-s-indacene. 
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Table 1. Intramolecular anti-hydroarylation of 1a 
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a A mixture of 1 (1 equiv.), Pd(dba)2 (5 mol%), PCy3 (10 mol%), pivalic acid (10 

mol%), and toluene (1 M) was heated at 100 °C. b Isolated yields. Numbers in 

parenthesis are NMR yields. c 3a was generated in 9% yield. d Absence of pivalic 

acid. e Pd(OPiv)2 (5 mol%) was used instead of Pd(dba)2 and pivalic acid. 
f 3a was 

generated in 5% yield. g 1a (1.51 g, 3.8 mmol), Pd2(dba)3 (0.19 mmol), PCy3 

(0.38 mmol), pivalic acid (0.38 mmol), in toluene (3.8 mL), at 100 °C for 30 h to 

form 2a (1.23 g, 3.0 mmol). h After stirring for 20 h, Pd(dba)2 (5 mol%), PCy3 (10 

mol%), and pivalic acid (10 mol%) were further added to the mixture, which was 

stirred at 100 °C for 20 h. i Toluene (0.5 M). j The isolated product includes an 

indeterminable byproduct. Dipp = 2,6-iPr2-C6H3. 
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Figure 2.  ORTEP diagrams of A) 2a and B) 5.  

We further examined the electronic effect. Substrate 1l 

having phenyl and p-fluorophenyl groups on the propargylic 

carbon gave two possible products 2l and 2l’ in 47% and 

34% yields (58:42), respectively (eq 1). 2l is the annulation 

product to the phenyl group, where as 2l‘ is derived from 

annulation into the p-fluorophenyl group. The observed 

ratio suggests that an electron-rich aryl group is more 

reactive as was the case of the previously reported 

benzosilole formation.
9c
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With the success of the anti-hydroarylation in hand, 

we extended the reaction design to a double annulation 

starting with bis(propargyl)arenes. 1,4-trans-Bis(1-phenyl-

propargyl)benzene 4, which was prepared by the reaction of 

bis(benzoyl)benzene with lithium aryloxyacetylide, was 

heated in the presence of double amounts of the catalysts to 

give three possible products, 1,5-dihydro-s-indacene 5, 1,4-

bisindenyl benzene 6, and unsymmetric biscycle 7 in 

roughly similar yields (eq 2). Condensed cycle 5, insoluble 

in hexane or dichloroethane, could be facile isolated and 

purified by reprecipitation followed by recrystalization 

using hot benzene.
12
 The structure of 5 was determined by 

X-ray crystallographic analysis (Figure 2B).  
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Plausible reaction mechanism is shown in Figure 3 

based on the results and our previous benzosilole 

formation.
9c,9e

 First, palladium complex A coordinated by 1, 

PCy3, and pivalic acid is generated. syn-Hydropalladation of 

A occurs regioselectively to form vinyl palladium pivalate B. 

Stereoisomerization takes place to reduce the steric 

repulsion between bulky CPh2(OMe) and Dipp,
13
 thereby 
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affording Z-complex C. Subsequent C–H activation leads to 

the formation of palladacycle D via a concerted-metalation-

deprotonation pathway or an SEAr mechanism.
14
 Finally, 

reductive elimination produces the indene 2 and regenerates 

a palladium(0) complex.  
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 Figure 3.  Plausible mechanism using 1a as a representative substrate 

 

The product 2a was treated with 0.1 equiv. of p-

toluenesulfonic acid in acetone, giving 3-phenyl-1-indenone 

(8) in 69% yield via elimination of both methoxy and Dipp 

groups (eq 3).  
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In conclusion, a simple palladium(II)/carboxylic acid 

dual catalyst is demonstrated to be highly effective and 

induce anti-hydroarylation of aryloxypropargylarenes. This 

reaction proceeds via ortho-C–H bond activation without 

further isomerization and gives oxyfunctionalized indenes. 

This method allows the construction of not only various 

indenes but also an 1,5-dihydro-s-indacene by a 

bis(propargyl)benzene. Current efforts are directed toward 

the transformation of the product, the construction of other 

cyclic molecules, and the development of indene-based 

functional molecules. 
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