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ABSTRACT: A stereodivergent Pd/Cu catalyst system has been devel-
oped for the unprecedented dynamickinetic asymmetric transformation
(DyKAT) of racemic unsymmetrical 1,3-disubstituted allylic acetates
with prochiral aldimine esters. A series of a,a-disubstituted a-amino
acids bearing vicinal stereocenters were easily prepared with excellent
enantioselectivities (up to >99% ee) and diastereoselectivities (up
to >20:1 dr). By simply changing the configurations of the two chiral
metal catalysts, all four stereoisomers of the product can be readily
obtained. Furthermore, our work highlights the power of synergistic
Pd/Cu catalysis consisting of two common bidentate chiral ligands for
stereodivergent synthesis.

Transition-metal-catalyzed asymmetric allylic alkylation (AAA) has
proved to be a powerful method for the construction of carbon-carbon
bonds. A large number of investigations concerning the AAA of
monosubstituted allylic esters and symmetrical 1,3-disubstituted allylic
esters have been reported.["?) However, there are only limited examples
of asymmetric reactions with unsymmetrical 1,3-disubstituted allylic
esters. In general, this transformation proceeds via a net retention
mechanism (double inversion)**! or kinetic resolution process'®),
giving racemic products or up to 50% of the theoretical maximum yield.
Accordingly, full conversion of racemic and unsymmetrical 1,3-
disubstituted allylic esters to a single, enantioenriched product, known
generally as dynamic kinetic asymmetric transformation (DyKAT)," is
highly desired but still remains a challenge.[*'%! Although significant
progress in the area of AAA has been reported recently through the
elegant contribution from the research groups of Pucheault, Liao, Ka-
watsura, and Zhang, special substrates with - borylate, CF;, and
ethylene carbonate groups® and weak interactions!!”! (hydrogen
bonding between the nucleophile and ligand) are required for the
DyKAT to proceed smoothly (Scheme 1). Furthermore, these
stereoconvergent transformations with prochiral nucleophiles would
provide an effective and convenient method for the construction of
adjacent stereocenters. However, the development of such a process
would become much more challenging not only due to the difficult
handling of the DyKAT process but also because of problems associated
with the remote stereocontrol of the prochiral nucleophiles.!'”!
Therefore, the development of new catalytic systems for the DyKAT of

Scheme 1. Bimetallic Catalyzed DyKAT of AAA for the Stereo-
divergent Construction of Adjacent Stereocenters
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common unsymmetrical 1,3-disubstituted allylic esters with prochiral
nucleophiles (even common nucleophiles) is greatly required (Scheme

0.

In recent years, cooperative bimetallic catalysis has received
increasing attention due to its potential advantages over classic single
catalytic methodologies in terms of reactivity and selectivity;!!'"*¥) this
has been demonstrated by the development of novel nucleophiles, the
stereocontrol of prochiral nucleophiles and even stereodivergent
synthesis.'*!¥ In continuation of our research on bimetallic
catalysis,!12+% 303K we envisioned using this strategy to realize the first
DyKAT of racemic and unsymmetrical 1,3-disubstituted allylic
substrates for the stereodivergent construction of adjacent stereocenters

(Scheme 1).

In the DyKAT process, the ionization of racemic and unsymmetrical
allyl acetates initially generates the two m-allylpalladium intermediates A
and B, which can convert between each other (Scheme 2). If

ACS Paragon Plus Environment



oNOYTULT D WN =

Journal of the American Chemical Society

interconversion of A and B is favorable and the nucleophiles attack A
and B at different speeds, an effective DyKAT would occur. The specific
performance of this bimetallic catalysis strategy in the DyKAT most
likely exists: 1) By introducing the other copper catalyst, the N-
metalated azomethine ylides that are generated in situ as a “softer” and
more crowded three-dimensional nucleophile compared to before, leads
to a reduction in nucleophilicity. Accordingly, this strategy could favor
greater interconversion between A and B (for 1*); 2) The enantiopure
and rigid structure of the five-membered azomethine ylide could be
beneficial to distinguishing between the diastereomeric A and B in the
presence of chiral ligands. Both factors mentioned above could together
promote the DyKAT to give a major enantiomer of a product with
satisfactory stereoselectivity (for 2*); 3) All four stereoisomers of a
desired product are expected to be obtained if each catalyst allows for
full control over the configuration of each respective stereocenter (for
3*).

Herein, we successfully implement this bimetallic catalysis strategy
for the AAA of racemic and acyclic unsymmetrical 1,3-disubstituted
allylic substrates with prochiral aldimine esters. A series of optically
active a-allyl-a-alkyl a-AAs containing vicinal stereocenters could be
easily synthesized in high yields and with excellent stereoselectivities; "’
these important structural motifs are present in a number of biologically
active natural products and pharmaceuticals (e.g, lactacystin,
sulfonamide altemicidin, and neooxazolomycin).!**! This methodology
would not only provide a versatile library of enantioenriched building
blocks with divergent activities for drug screening but also facilitate the
exploration of structure-activity relationships.

Scheme 2. Exploring the Specific Performance of Bimetallic Ca-

talysis Strategy in DyKAT
N Me
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3* schematic diagram for regulation of stereodivergent synthesis
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Initially, racemic unsymmetrical 1,3-disubstituted allylic esters 1a-3a
were selected as the model substrates for the AAA of aldimine Schiff
bases 4a-6a (Table 1). To test the effect of the leaving group on the allyl
moiety, several allylic esters were subjected to the reaction conditions
(entries 1-3). Conducting the reaction with allylic acetate 3a and
aldimine Schiff base 4a (R' = Ph) gave (S,R)-7aa with the best
stereoselectivity of 6:1 dr and 99% ee (entry 3).l'") In order to gain
insight into the nature of the cooperative effect, control experiments
were conducted. No reaction occurred using only the Cu/L2 catalyst
(entry 4). The reaction proceeded with substantially lower reactivity
when only Pd/L1 catalyst was used (entry S). The Pd and Cu complexes
are indispensable for the transformation. When K;PO4 was used instead

of K;COs, the yield improved to 88% with 7:1 dr (entry 6). Guided by
the reaction mechanism (Scheme 2), the inefficient interconversion of
the two m-allylpalladium intermediates may be the main reason for the
moderate stereoselectivity. To achieve higher diastereoselectivity, the
volume of reaction solvent was increased to reduce the reaction rate,
which may allow for more obvious distinction between the two =-
allylpalladium diastereomers (entries 7 and 8). As expected, the desired
product (S,R)-7aa was obtained in 89% yield with excellent
diastereoselectivity (14:1 dr) and enantioselectivity (>99% ee) when
using 4 mL of THF (entry 8). To our delight, no regioisomeric product
of the allylic substrate 3a was detected in our Pd/Cu catalyst system.[*"!

Table 1. Optimization of the Reaction Conditions"

2.5 mol % [Pd(allyl)Cll, Me
LG 9 - hydrolysi
/\)\ + RLUN__CO/8Bu 5 mol % (R,R)-L1 ydrolysis Ph/\/QQNm
Ph Me Y 5 mol % [Cu(MeCN),BF, ME N
Me 5mol % L2 CO2Bu
(rac)-1a-3a 4a-6a K,CO3, THF 7aa

‘ [Pd(ally)Cll, ‘ ‘ [CU(MeCN)JBF, ‘ substrates:
1a: LG = OCO,Me
% PPh, O 2a: LG = OBoc
Qﬁs\\o é /J\\N> '< 3a:LG = OAc
PiNQ Fe 4a:R'=Ph
@’5/:0 4 5a: R' = 1-Naph
N ®RL (RRy)L2 6a: R' = 9-Anthryl

yield . ee (%)

ent sub. L for Pd L for Cu r
i (%) (config.)

la 4a (RR)}L1 (RR)L2 74 21  98(SR)
2a 4a (RR)}-L1 (RR,)-L2 85 21 99(SR)
4a (RR)-L1 (RR)L2 81 61  99(SR)
3a 4a noPd (RRy)-L2  nr
3a 4a (RR)-L1 no Cu trace - --

66 3a 4a (RR)}L1 (RR,)-L2 88 7:1 99(SR)

74  3a 4a (RR)-L1 (RRy)-L2 83 11:1 >99(SR)

8¢ 3a 4a (RR)L1 (RR,)L2 89 141 >99(SR)

9¢ 3a 4a (RR)-L1 (SS,)L2 35 12  97(SS)

10" 3a 4a (RR)-L1 (S5S)L2 61 1:3  99(SS)

11" 3a Sa  (RR)-L1 (S5S,)-L2 77 1:3  94(SS)

12 3a 6a (RR)-L1 (S5S,)L2 29 1:5  55(SS)

13 3a 6a (RR)L1 (SS,)L2 74 1:8  95(SS)

14°% 3a 6a (RR)-L1 (SS,)L2 8 1:8  95(SS)
“Reaction conditions: 1a-3a (0.125 mmol, 1.0 equiv.), 4a-6a (0.150
mmol, 1.2 equiv.), [Pd(allyl)Cl], (2.5 mol %), (R,R)-L1 (5 mol %),
[Cu(MeCN)4]BEs (5 mol %), (R,Ry) or (S,S;)-L2 (S mol %), K.COs
(1.2 equiv.), rt, THF (1 mL), 12 h. "Isolated yield of all diastereoisomers.
nr = no reaction. ‘Ratio of dr determined by 'H NMR integration. ‘De-
termined by HPLC analysis using an OD-H column. ‘K;POs (1.2 equiv.)
was used instead of KzCOs. THF (2 mL). ¢THF (4 mL), 24 h."THF
(0.5mL).’0°C, 24 h./6a (1.5 equiv.), KsPOs (1.5 equiv), 0 °C, 72 h.

(O O N S
@w
e

Subsequently, we set out to establish the availability of the enantio-
and diastereodivergent access to 7aa. Predictably, by changing (R R,)-
L2, the ligand for Cu, to (S,S,)-L2, (S,5)-7aa was generated successfully
but in low yield with unsatisfactory diastereoselectivity (entry 9). When
the volume of THF was reduced to 0.5 mL, the reaction yield was
increased to 61% (entry 10). In order to obtain higher
diastereoselectivity, it is necessary to increase the steric hindrance of the
aldimine Schiff base, which makes it easier for the chiral aldimine-Cu
complex to distinguish between the two n-allylpalladium diastereomers
(entries 11 and 12). Encouragingly, excellent enantioselectivity and
moderate diastereoselectivity were observed when 6a (R' = Anthryl)
was used, although with the product being obtained in only 29% yield.
Interestingly, the reaction liquid became black after 12 h and a certain
amount of (E)-buta-1,3-dien-1-ylbenzene was detected. Consequently,

ACS Paragon Plus Environment

Page 2 of 8



Page 3 of 8

oNOYTULT D WN =

Journal of the American Chemical Society

B-H elimination of the w-allylpalladium intermediates as the competing
reaction led to the low product yield (entry 12). Accordingly, the
reaction temperature was reduced to 0 °C to inhibit the -H elimination
process, and the desired product was obtained in 74% yield with good
stereoselectivity after 24 h (entry 13). Furthermore, by adding more
nucleophile and base in order to increase the reactivity and by extending
the reaction time, (S,S)-7aa was obtained in 82% yield with 8:1 dr and
95% ee (entry 14). Finally, all four stereoisomers could be prepared in
high yields and with excellent stereoselectivity by changing the
configuration of L1 and L2 (Scheme 3).

Scheme 3. Synthesis of All Four Stereoisomers of 7aa

Me Me
S _NH OAc HN A
Ph/\/\:< 2 (R,R)-L1 /\/i (S,5)-L1 N A~pn
Me Nco,Bu  (RRp)-L2 Ph Me (852 guo,d! Me
(rac)-3a
(S,R)-Taa?, 89% yield (R.S)-7aa? 90% yield
>99% ee, 14:1dr + >99% ee, 12:1dr
Ve RVNYcogBu Me
Z _NH R.R)-L1 ,S)-L1 HN A
Ph/\/x 2 (SS ) = Me (S,S) 2 7(\/\’3“
BUO,C Me (SSp) 4a or 6a (RRpyL2 Me" CO,Bu

(S,S)-7aa®, 82% yield
95% ee, 8:1dr

(R,R)-Taa®, 81% yield

4a:R'=Ph 6a:R'=9-Anthryl 91% ee, 8:1 dr

Reaction conditions: “See Table 1, entry 8. "See Table 1, entry 14.

Next, an array of aldimine Schiff bases derived from a-substituted a-
AAs were treated with 3a under the optimized conditions (Table 2).
Substrates with different ester groups performed well under the
standard conditions (7aa-7ad). However, a-AAs substituted with a
bulky group (4e-4j) only afforded the corresponding products in low
yields (7ae-7aj) with a large amount of -H elimination product being
observed. When the temperatue was reduced to 10 °C, the competing
reaction was successfully inhibited and the target reactions gave the
corresponding a,a-dialkyl a-AAs in good to high yields and with
excellent stereoselectivities (up to >99% ee and up to >20:1 dr). The
ketimine ester is also suitable for this reaction (7ak). The absolute
configurations of (S,S)-7aj was determined by X-ray crystallography.

Table 2. Substrate Scope of Aldimine Esters’
2.5 mol % [Pd(allyl)Cl],

OAc o
/\/5\ + Ph._N__COR? 5mol % (R,R)-L1  hydrolysis /\/QQ
Ph Me he 5 mol % [Cu(MeCN),]BF, Mo
R 5mol % (R,R,)-L2 2
(rac)-3a 4 KsPO,, THF, rt (SR)IT
Me Me
A NH L _NH
Ph/\/\s< 2 Ph/\vX 2 /\V\<
Me' Yco,Bu Me' Yco,ipr CO,Et

(S,R)-7aa, 89% yield
>99% ee, 14:1 dr

(S.,R)-7ab, 88% yield
>99% ee, 11:1dr

(S,R)-Tac, 86% yield
>99% ee, 10:1 dr

Me Me Me
A _NH. “__NH NH.
PhA\/X 2 Phw 2 /\/\<
Me" *co,Bn Et" Yco,Bu CO,'Bu

(S,R)-Tae®, 85% yield
>99% ee, 13:1dr

(S,R)-7af®, 76% yield
98% ee, >20:1 dr

(S,R)-7ad, 84% yield
>99% ee, 9:1dr

Me l\;lle Me
S A _NH, ph X ~_NH, N “__NH,
I CO,'Bu y CO,'Bu /— CO,Bu
BUO MeS

(S,R)-Tag", 62% yield
>99% ee, 18:1 dr

(S.R)-7ah®, 67% yield
>99% ee, >20:1 dr

(S,R)-Tai®, 71% yield
>99% ee, >20:1 dr

Me Me
S~ NH N
Ph/\/X 2 Phw \>/Ph
— O~ ‘co,Bu Bu0,C

Bu

(S,5)-7aj, 82% yield (S,R)-Tak<, 77% yield
99% ee, >20:1 dr >99% ee, 6:1 dr

“Reaction conditions: See Table 1, entry 8.°10°C, 48 h.‘Without hydrol-
ysis.

(S,9)-7aj

A range of allylic acetates substituted with arenes bearing electron-
donating and electron-withdrawing substituents all furnished the
corresponding products with high reactivities and excellent selectivities
(Table 3, 7ba—7ma), especially for those bearing substituents at the
ortho-position of the arene functionality. Furyl- and thienyl-substituted
allyl acetates were successfully employed to furnish their desired
products (7na and 70a). Furthermore, reactions involving 1-ethyl, 1-
propyl and 3-cyclohexyl-substituted allyl acetates also proceeded well to
deliver their desired products in good yields and with excellent
stereoselectivities (7pa-7ra).

Table 3. Substrate Scope of 1,3-Disubstituted Allylic Esters”

2.5 mol % [Pd(allyl)Cl], R
/\/5\ \(COZ'BU 5 mol % (R,R)-L1 hydrolysis Ar X NH,
5 mol % [Cu(MeCN),]BF, Me 4
Me 5 mol % (R,R,)-L2 €O, Bu
(rac)-3 4a K3POy, THF (S.R)-T
R' Me
P NH,
o \©/\/\<CO2,BU WcoztBu
R'=Me, (S,R)-Tba, = Me, (S,R)-7ga, = Me, (S,R)-Tia,

85% vyield, 99% ee, 13:1 dr 87% yield, >99% ee, 9:1 dr 84% yield, >99% ee, 12:1 dr

R'=OMe, (S,R)-7ca,
83% yield, 97% ee, >20:1 dr

R%2=F, (S,R)-Tha,
90% vyield, 99% ee, 8:1 dr

R3=F, (S,R)-Tja,
88% vyield, 99% ee, 10:1 dr

=F, (S,R)-7da,
F.(SR)-7da OMe Me Me

0/ vi o . H H
88% yield, >99% ee, 17:1 dr N,

Me N NH;
Me  Yco,Bu MemcoZrBu

(S.R)-Tka, 68% yield
96% ee, >20:1 dr

=Cl, (S,R)-Tea,
84% yield, >99% ee, >20:1 dr MeO

R'=CN, (S,R)-7fa,
66% vyield, 96% ee, 16:1 dr

Me Me Me Me
/@\/\/‘X"“’b m'\“ﬁ m'\“’b
Me [ \ Me ‘ \ Me" ¢
Me Me CO,Bu o] 'CO,Bu S 'CO,Bu
(S,R)-Tma, 72% yield
97% ee, >20:1 dr

(S.R)-Tla, 79% yield
98% ee, 8:1dr

(S,R)-Tna, 73% yield
>99% ee, 11:1dr

(S,R)-7oa, 61% yield
97% ee, 17:1dr

Et ”Pr Me
2 __NH S __NH
Ph/\/x 2 A S 2
Me' *co,Bu cozfsu Me' *co,Bu

(S,R)-Tpa, 59% yield
>99% ee, >20:1 dr

(S.R)-Tqa, 54% yield
99% ee, >20:1 dr

(S.R)-Tra, 52% yield
96% ee, 5:1dr

“Reaction conditions: See Table 1, entry 8.

Notably, the aldimine esters and allyl acetate scopes were investigated
in a stereodivergent manner under the optimal reaction conditions
(Table 4). A series of a-substituted aldimine esters derived from DL-
alanine and other non-natural a-AAs reacted with 3a smoothly,
providing the non-coded a-AAs (7aa, 7ad-7af, 7ah and 7aj) in good
yields and with high enantio- and diastereoselectivities. It is noteworthy
that all these reactions furnished products in a stereodivergent manner,
allowing access to both diastereoisomers. Reactions with a range of
allylic acetates 3 also gave products (7ca-7ea, 7ga, 7ja and 7la) with
access to two diastereoisomers. It was found that allylic acetates bearing
substituents at the ortho-, meta-, or para-position of the phenyl ring were
all tolerated in this transformation.

In general, a net retention mechanism or kinetic resolution process is
observed for Pd-catalyzed allylic substitutions with unsymmetrical 1,3-
disubstituted allylic esters.>*! Therefore, we were interested in the
specific pathway of this DyKAT process in our Pd/Cu dual catalytic
system. At first, the reaction with (rac)-3a was monitored over different
reaction times and the substrate 3a was recovered and analyzed by
HPLC with a chiral AD column (Figure 1, for detailed reaction
conditions, see the Supporting Information). The results showed that
(R)-3a and (S)-3a were consumed together, and that the amount of (S)-
3a decreased more rapidly. After 5 hours, the starting material 3a was
recovered in 13% yield with 30% ee. In order to further increase our
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Table 4. Stereodivergent Synthesis

) NH
A,/\/% 2
RT

CO,R?

Me

(S,R)-T*

Journal of the American Chemical Society

hydrolysis Pd / (R,R)-L1
Plidahebind Al A Neddi
Cul(RRL2 AT

OAc

/\/iMe + RN /k
3

Me
Pd/(RR)-LT_ hydrolysis -~ NH;
COR? Cu/(ss,) L2 A
dor6 R" COR
(S,9)-7°

(S.R)-Taa, 89% yield
>99% ee, 14:1 dr

(S.S)-7aa, 82% yield
95% ee, 8:1dr

CO,'Bu
Me
(S,R)-7ad, 84% yield S~ NH, (S,5)-7ad, 76% yield
>99% ee, 9:1 dr Ph 86% ee, 6:1 dr
C0O,Bn

(S.R)-Tae®, 85% yield
>99% ee, 13:1dr

(S.R)-7af°, 76% yield
98% ee, >20:1 dr

/

/v><

/\/BX

cogau

Me

CO,'Bu

(S.,5)-Tae, 73% yield
92% ee, 8:1dr

(S.,9)-7af, 53% yield
85% ee, 10:1 dr

(S,R)-Tah?, 67% yield X (S,5)-7ah, 51% yield
>99% ee, >20:1 dr G COZ‘Bu 91% ee, 10:1dr
‘BuO
(S.5)-7aj°, 82% yield N Y (S,R)-Taj, 75% yield

99% ee, >20:1 dr

98% ee, 16:1 dr

(S.R)-Tca, 83% yield
97% ee, >20:1 dr

(S,R)-Tda, 88% yield
>99% ee, 17:1 dr

(S.R)-Tea, 84% yield
>99% ee, >20:1 dr

(S.R)-7ga, 87% yield
>99% ee, 9:1 dr

(S.R)-Tja, 88% yield
99% ee, 10:1 dr

(S,R)-Tla, 79% yield
98% ee, 8:1dr

(S.S)-Tca, 72% yield
95% ee, 8:1dr

(S.S)-7da, 62% vyield
99% ee, 5:1dr

(S.S)-Tea, 63% yield
>99% ee, 12:1 dr

(S.5)-7ga, 76% vyield
88% ee, 7:1dr

(S.5)-7ja, 74% yield
96% ee, 6:1dr

(S.5)-Tla, 66% yield
89% ee, 5:1dr

BuO CO,/Bu

I\=Ae
P
Me

Reaction conditions: “See Table 1, entry 8. "See Table 1, entry 14.°10°C, 48 h.

understanding of the mechanism, reactions with pure, optically active
(R)-3a and (S)-3a were conducted, giving the same products (S,R)-7aa
with different diastereoselectivity [6:1 dr versus 19:1 dr, respectively]
(Scheme 4). Given that no racemization occurred using the pure,
optically active (S)- and (R)-4-phenylbut-3-en-2-yl acetates [(R)-3a
and (8)-3a],['% the results mentioned-above both suggested that the
combination of (R,R)-L1 and (R,R,)-L2 matched with (S)-3a and mis-
matched with (R)-3a. The efficient interconversion of the =-
allylpalladium species B derived from (R)-3a into the n-allylpalladium
species A, occured before attacked by the nucleophile.

100 40
= recovered YiEﬂdS of substrate 3a

90 -+ e values of recovered substrate 3a 4 33

80 “
gm
3 60 12 €
) [:5]
30 {20 5
QL
§ 40 115 ﬁ
2 30 110

20

10 13

0

1 2 3 4 5 6
Time (h)

Figure 1. Ee Values and Recovered Yields of Substrate 3a at Dif-
ferent Reaction Times

Accordingly, a DyKAT mechanism in our stereodivergent Pd/Cu
catalysis proposed above was further approved (Scheme 2). The
oxidative addition of racemic 3a with Pd/(R,R)-L1 initially via a net
inversion mechanism, generates the two m-allylpalladium intermediates
A and B. A and B can transform into each other through nucleophilic
displacement via the palladium(0) species.!*2”) The two diastereoiso-
mer products (S,R)-7 and (S,S)-7 can be obtained via nucleophilic at-
tack on the 7-allylpalladium species A by the N-metalated azomethine
ylides with (R,R,)-L2 and (S,S,)-L2, respectively.

In summary, we have developed a stereodivergent Pd/Cu catalyst
system, which was successfully applied to a DyKAT of racemic
unsymmetrical 1,3-disubstituted allyl acetates with prochiral aldimine
esters, providing efficient access to enantiopure a,a-disubstituted a-AAs

Scheme 4. The Study on the DyKAT Process
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Reaction conditions: See Table 1, entry 8.
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bearing vicinal stereocenters in a fully stereodivergent manner. Differing
from the previous work based on the hydrogen bonding between the
nucleophile and BiSO-P ligand, an enantio- and diastereoselective
alkylation of unsymmetrical 1,3-disubstituted allylic esters with
commom prochiral nucleophiles has been achieved via Pd/Cu dual
catalysis. To the best of our knowledge, this reaction represents an
unprecedented example of the enantioselective and diastereodivergent
construction of adjacent stereocenters that proceed via a DyKAT
process. Compared with the stereodivergent Ir/Cu catalysis containing
a metallacyclic iridium complex, this Pd/Cu catalyst system consisting
of two common bidentate ligands, could also be utilized for
stereodivergent synthesis. Accordingly, the use of classic and
commercially available chiral bidentate ligands should allow for the

assembly of bimetallic catalyst libraries for stereodivergent synthesis.
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DyKAT for stereodivergent construction of adjacent stereocenters:

R2
,/\ﬁAC @ @ /l-iz\NE:COZtBU
+ R3 _N 0,Bu =~ &
A A R! a4 \{C 2 Bimetallic Catalysis Ar X 1
R2

R
R' = Me, Et, "Pr all possible
(rac) (rac) stereoisomers
Challenges:

O two racemic starting materials to optically pure products by DyKAT
Q general unsymmetrical 1,3-disubstituted allylic esters

the construction of adjacent stereocenters
O stereodivergent synthesis for all four stereoisomers

ACS Paragon Plus Environment



