

## **Accepted Article**

Title: Enantioselective Dearomative Difunctionalization of Indoles via Palladium-Catalyzed Domino Heck/Sonogashira Sequence

Authors: Yi-xia Jia, Ren-Rong Liu, Yong-Gang Wang, Ying-Long Li, Bing-Bing Huang, and Ren-Xiao Liang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201703833 Angew. Chem. 10.1002/ange.201703833

Link to VoR: http://dx.doi.org/10.1002/anie.201703833 http://dx.doi.org/10.1002/ange.201703833

# WILEY-VCH

#### WILEY-VCH

## Enantioselective Dearomative Difunctionalization of Indoles via Palladium-Catalyzed Domino Heck/Sonogashira Sequence

Ren-Rong Liu, Yong-Gang Wang, Ying-Long Li, Bing-Bing Huang, Ren-Xiao Liang, and Yi-Xia Jia\*

Dedicated to Professor Qi-Lin Zhou on the occasion of his 60th birthday

**Abstract:** Pd-catalyzed enantioselective dearomative arylalkynylation of *N*-substituted indoles through a domino Heck/Sonogashira sequence was established with a new BINOL-based phosphoramidite as chiral ligand. A very wide range of 2,3-disubstituted indolines bearing vicinal quaternary and tertiary stereocenters were efficiently constructed in one step with excellent enantioselectivities (up to 97% ee) and diastereoselectivities (>20:1).

Palladium-catalyzed domino Heck/anion capture sequence involving intramolecular carbopalladation of alkene and subsequent trapping of the alkylpalladium intermediates represents an important method for 1,2-difunctionalization of alkene.<sup>[1]</sup> Numerous transformations, typically initiated by an oxidative addition of Pd(0) to (vinyl)aryl halide, have been developed by employing a variety of trapping agents to terminate the alkyl-Pd species, which evidenced their utilities in organic synthesis.<sup>[2]</sup> In sharp contrast, the corresponding asymmetric reactions were rather limited. Enantioselective domino Heck/allylic-substitution processes in the reactions with conjugated dienes have showed their efficacy in constructing complex molecules,<sup>[3]</sup> whereas  $\sigma$ -alkylpalladium capture for enantioselective 1,2-difunctionalization of simple alkenes remained more challenging. Attractive examples involved 1,2difunctionalization of N-aryl acrylamides reported by Zhu and coworkers with cyanide,<sup>[4a]</sup> azoles,<sup>[4b]</sup> and isocyanides/MeOH<sup>[4c]</sup> as nucleophiles to capture the primary  $\sigma$ -alkylpalladium species, rendering the construction of chiral 3,3'-disubstituted oxindole moieties more efficient (Scheme 1a). an Besides, enantioslective vinylborylation of alkene has been developed recently by Tong and co-workers.<sup>[4d]</sup> In spite of these progress,<sup>[5]</sup> one-step construction of vicinal stereocenters by capturing the secondary  $\sigma$ -alkylpalladium species remained underdeveloped as a difficult task.<sup>[6]</sup> Moreover, the development of other type of trapping agents to terminate asymmetric Heck reaction is highly desirable.

Recently, catalytic asymmetric dearomatization of (hetero)arenes has been intensely developed as an efficient access to produce non-aromatic cyclic molecules.<sup>[7]</sup> Palladium-catalyzed dearomative Heck-arylation of indoles provides reliable approach to indolines, which are frequently occurring substructures in natural products.<sup>[8]</sup> Based on dearomative Heck and reductive-Heck reactions, facile construction of C2-substituted indolines bearing one single stereocenter have been realized by Yao and Wu, Fukuyama, and our group.<sup>[9]</sup> Further, through a domino sequence of Heck/benzyl-Pd species capture,

[\*] Dr. Ren-Rong Liu, Yong-Gang Wang, Ying-Long Li, Bing-Bing Huang, Dr. Ren-Xiao Liang, and Prof. Dr. Yi-Xia Jia College of Chemical Engineering Zhejiang University of Technology Chaowang Road 18<sup>#</sup>, Hangzhou 310014, China Supporting information for this article is given via a link at the end of the document.

dearomative diastereoselective indole difunctionalization reactions were established by Lautens, Liang, and our group, furnishing a range of 2,3-disubstituted indolines bearing vicinal stereocenters by arylcyanation, diarylation, and arylalkynylation reactions.<sup>[10]</sup> Nevertheless, enantioselective dearomative Heck arylation of indoles remained much less exploited<sup>[9b,9c]</sup> and so far no example was reported for the asymmetric dearomative difunctionalization reaction. Here, we communicate a Pdcatalyzed dearomative arylalkynylation of indoles via a domino Heck/Sonogashira sequence using a new BINOL-based phosphoramidite as chiral ligand (Scheme 1b). Indolines bearing vicinal quaternary and tertiary stereocenters at C2-C3 position were efficiently created in one step with excellent enantioselectivities and diastereoselectivities.





b) Current work: Dearomative Heck-arylation/secondary benzyl-palladium capture



 $\label{eq:Scheme 1. Enantioselective palladium-catalyzed domino Heck-arylation/\sigma-alkylpalladium species capture process$ 

Indole 1a and phenylacetylene 2a were chosen as model substrates. Gratifyingly, initial test led to the desired product 3a1 in 70% yield and 29% ee by heating the mixture of 1a and 2a in THF (100 °C) with Pd(dba)<sub>2</sub> (5 mol%), phosphoramidite L1 (10 mol%), and K<sub>2</sub>CO<sub>3</sub> (2.0 equiv.) (Table 1, entry 1). Surprisingly, the addition of Cul (5 mol%) as a co-catalyst fully suppressed the reaction (entry 2). Slightly lower enantioselectivities were observed when Pd(dba)<sub>2</sub> was replaced by Pd(CH<sub>3</sub>CN)<sub>2</sub>Cl<sub>2</sub> or Pd(OAc)<sub>2</sub> (entries 3-4). Subsequent ligand examination revealed that the amino substituent of BINOL-based phosphoramidite ligands significantly influenced the enantioselectivity (entries 5-14). Increasing the size of amino substituent could improve the enantioselectivity. Diisopropyl amino ligand L3 led to 84% yield and 62% ee, while relatively lower ee values were achieved for L2, L4 bearing benzyl and n-butyl substituents, respectively (entries 5-7). Comparable results were afforded for MonoPhos-PE (L5-L6) and Me-THQphos L7 (entries 8-10). To achieve higher ee, the modified diisopropyl amino ligands L8-L11 bearing 3,3'-diaryl substituents were then examined (entries 11-

#### WILEY-VCH

14). As expected, the enantioselectivity of **3a1** was enhanced to 75% for the phenyl-substituted ligand **L8** and to 84% for 4-MeO-phenyl ligand **L9** and 2-naphthyl ligand **L10**. Solvent effect was then investigated (entries 15-17) and the reaction in MTBE delivered **3a1** in 93% ee albeit with a moderate yield (entry 16), while lower ee was observed in toluene (entry 17). Gratefully, the yield was improved to 82% in a mixed solvent of MTBE/THF (1:1) and enantioselectivity was retained (entry 18). It is worth to note that excellent diastereoselectivities (>20:1) were observed for all of the isolated products.

#### Table 1. Optimization of the reaction conditions.<sup>[a]</sup>



| Entry             | L*  | [Pd]                 | Solvent           | Yield<br>[%] <sup>[b]</sup> | Ee<br>[%] <sup>[c]</sup> |
|-------------------|-----|----------------------|-------------------|-----------------------------|--------------------------|
| 1                 | L1  | Pd(dba) <sub>2</sub> | THF               | 70                          | 29                       |
| 2 <sup>[d]</sup>  | L1  | Pd(dba) <sub>2</sub> | THF               | Trace                       | )                        |
| 3                 | L1  | Pd(OAc) <sub>2</sub> | THF               | 68                          | 28                       |
| 4                 | L1  | $Pd(CH_3CN)_2Cl_2$   | THF               | 73                          | 23                       |
| 5                 | L2  | Pd(dba) <sub>2</sub> | THF               | 78                          | 34                       |
| 6                 | L3  | Pd(dba) <sub>2</sub> | THF               | 84                          | 62                       |
| 7                 | L4  | Pd(dba) <sub>2</sub> | THF               | 79                          | 45                       |
| 8                 | L5  | Pd(dba) <sub>2</sub> | THF               | 74                          | 56                       |
| 9                 | L6  | Pd(dba) <sub>2</sub> | THF               | 78                          | 58                       |
| 10                | L7  | Pd(dba) <sub>2</sub> | THF               | 65                          | 60                       |
| 11                | L8  | Pd(dba) <sub>2</sub> | THF               | 80                          | 75                       |
| 12                | L9  | Pd(dba) <sub>2</sub> | THF               | 85                          | 84                       |
| 13                | L10 | Pd(dba) <sub>2</sub> | THF               | 80                          | 84                       |
| 14                | L11 | Pd(dba) <sub>2</sub> | THF               | 82                          | 72                       |
| 15                | L9  | Pd(dba) <sub>2</sub> | Et <sub>2</sub> O | 53                          | 87                       |
| 16                | L9  | Pd(dba) <sub>2</sub> | MTBE              | 67                          | 93                       |
| 17                | L9  | Pd(dba) <sub>2</sub> | Toluene           | 80                          | 75                       |
| 18 <sup>[e]</sup> | L9  | Pd(dba) <sub>2</sub> | MTBE/THF          | 82                          | 92                       |

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), [Pd] (5 mol%), **L**<sup>\*</sup> (10 mol%), and K<sub>2</sub>CO<sub>3</sub> (2.0 equiv.) in the solvent (3.0 mL) at 100 °C for 18 h. [b] Isolated yield. [c] Determined by chiral HPLC. [d] Cul (5 mol%) was added. [e]  $V_{\text{MTBE}}$ :  $V_{\text{THF}}$  = 1:1; MTBE: methyl *tert*-butyl ether, THF: tetrahydrofuran.



Scheme 2. Scope of the alkynes. Reaction conditions: **1a** (0.2 mmol), **2** (0.3 mmol) Bd(dba). (5 mol%) **19** (10 mol%) and K(CO, (2.0 aquity) in

3a34 67%, 87% ee (n=4)

mmol), Pd(dba)<sub>2</sub> (5 mol%), L9 (10 mol%), and  $K_2CO_3$  (2.0 equiv.) in MTBE/THF (3.0 mL, 1:1) at 100  $^{\circ}C$ ; excellent d.r. (>20:1) were observed for all of the products. [a] MTBE (3.0 mL) was used instead.

With the optimal conditions in hand, we investigated the scope of alkyne and the results were listed in Scheme 2. To our delight, a very wide scope of alkynes was observed and all the reactions proceeded smoothly to deliver the desired products in good to excellent enantioselectivities. Arylacetylene bearing a series of *para*-substituents on the phenyl ring, including alkyl (**3a2**, **3a6**, **3a10**, **3a13**), alkoxyl (**3a3**, **3a9**), halide (**3a4**, **3a5**), phenyl (**3a7**),  $-CF_3$  (**3a8**),  $-OCF_3$  (**3a14**),  $-CO_2Me$  (**3a11**), -CN (**3a12**), and formyl group (**3a15**), reacted efficiently with indole **1a** to afford the corresponding products in moderate to good yields with 90-

94% ee. Ortho- and meta-substituents of arylacetylene, such as methyl, methoxyl, trifluoromethyl, and halides, were also well tolerated to give products 3a16-3a23 in 89-93% ee and no steric effect was observed for those ortho-substituted products 3a20-3a23. In addition, 2-naphthylethyne, ferrocenylethyne, and heteroarylethynes were successfully employed as substrates in the reactions to furnish indolines 3a24-3a28 in excellent enantioselectivities. Furthermore, a range of aliphatic alkynes were tested in this reaction. Excellent enantioselectivities for products 3a30 and 3a35 were achieved with 3,3-dimethylbut-1yne and ethynyltrimethylsilane as substrates. Gratifyingly, indolines bearing acetal (3a29), chloride (3a32), alcohol (3a33, 3a34), and propene (3a36) were isolated in moderate yields and good to excellent enantioselectivities in the reactions with the corresponding aliphatic alkynes. The reaction of a propargylic imide with 1a led to product 3a31 in 50% yield and 91% ee, of which the absolute configuration was determined to be 10R/11S based on its single crystal X-ray analysis.<sup>[11]</sup> Finally, non-terminal alkynes (3-phenylpropiolic acid 4 and 2-methyl-4-phenylbut-3vn-2-ol 5) were also tested in the reaction (Scheme 3). Product 3a1 was obtained in either lower yield or lower ee, probably due to poor solubility of acid 4 in the solvent and the backgroud reactions without chiral ligand in both cases.





The substrates scope with regard to indoles was then examined. As summarized in Scheme 4, substituent effect on the phenyl ring of the 2-bromobenzoyl moiety (R<sup>1</sup>) was first investigated. Either electron-donating or electron-withdrawing substituents were well tolerated in the reactions to yield products 3b1-3b6 in good to excellent ees, while lower ee was observed for product 3b3 bearing an ortho-methyl substituent and lower yield was obtained for product 3b6 having a fluoro group. Next, a range of substituents attached on the indole ring were screened. Indoles bearing aryl, ethyl, and ester groups at C2 position reacted efficiently with 2a and afforded products 3b7-3b11 in good results. It's worth to note that excellent enantioselectivity was achieved for 3b9 bearing a C2-furyl group, while lower ee was detected for 3b11 containing a ester substituent at C2 position. Moreover, the isopropyl, methyl, chloro, and fluoro substituents at C5 position of indole were well compatible in the reactions to yield products 3b12-3b15 in 89-92% ee with moderate to good yields.





10.1002/anie.201703833

3b12 70%, 89% ee Scheme 4. Scope of the indoles. Reaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), Pd(dba)<sub>2</sub> (5 mol%), L9 (10 mol%), and K<sub>2</sub>CO<sub>3</sub> (2.0 equiv.) in MTBE/THF (3.0 mL, 1:1) at 100 °C; excellent d.r. (>20:1) were observed for all of the products. [a] MTBE (3.0 mL) was used instead.



Scheme 5. Gram-scale reaction and synthetic transformations of 3a1: [a] Pd/C (10 mol%), H<sub>2</sub> (1 atm) in MeOH at 25 °C for 12 h; [b] Pd(OAc)<sub>2</sub> (5 mol%), in TFA/DCM (1:1, 0.1 M) for 72 h; [c] KMnO<sub>4</sub> (3.0 equiv.), NaHCO<sub>3</sub> (1.2 equiv.), Bu<sub>4</sub>NBr, in DCM/H<sub>2</sub>O at 45 °C for 12 h.

A gram-scale reaction of indole 1a with phenylacetylene 2a was carried out, which afforded product 3a1 in 80% yield and 93% ee, showing good reliability of the reaction (Scheme 5). Synthetic transformations of 3a1 were then performed. A Pd/C-

catalyzed hydrogenation reaction under H<sub>2</sub> atmosphere easily converted **3a1** to compound **6** in 90% yield. The hydrolysis of the alkyne moiety in TFA/DCM with Pd(OAc)<sub>2</sub> as a catalyst led to ketone **7** in 70% yield. Moreover, indolin-3-one **8** bearing a C2-quaternary stereocenter, an intriguing structural unit in natural products, was formed in 90% yield and 93% ee in the presence of KMnO<sub>4</sub>.

In conclusion, enantioselective dearomative difunctionalization of indoles has been developed through intramolecular Heckarylation and the following intermolecular capture of secondary benzyl-palladium species by alkynes with Pd(dba)<sub>2</sub>/phosphoramidite complex as a chiral catalyst. Based on this domino sequence, a very wide range of chiral indolines bearing vicinal quaternary and tertiary stereocenters at C2-C3 position were efficiently constructed in one step with moderate to good yields, excellent enantioselectivities and diastereoselectivities.

#### Acknowledgements

We are grateful for the generous support by the National Natural Science Foundation of China (21372202, 21502169, 21522207) and the Natural Science Foundation of Zhejiang Province (LR14B020001, LQ15B020003).

**Keywords:** Dearomatization • Palladium • Heck reaction • Alkynes • Asymmetric catalysis

[1] For reviews, see a) R. Grigg, V. Sridharan, J. Organomet. Chem. 1999, 576, 65; b) G. Poli, G. Giambastiani, A. Heumann, *Tetrahedron* 2000, 56, 5959; c) T. Vlaar, E. Ruijter, R. V. A. Orru, Adv. Synth. Catal. 2011, 353, 809; d) J. Muzart, *Tetrahedron* 2013, 69, 6735.

[2] For selected leading examples, see: a) B. Burns, R. Grigg, V. Santhakumar, V. Sridharan, P. Stevenson, T. Worakun, *Tetrahedron* **1992**, *48*, 7297; b) S. Jaegli, J.-P. Vors, L. Neuville, J. Zhu, *Synlett*, **2009**, *18*, 2997; c) S. Jaegli, J.-P. Vors, L. Neuville, J. Zhu, *Synlett*, **2009**, *18*, 2997; c) S. Jaegli, J.-P. Vors, L. Neuville, J. Zhu, *Tetrahedron* **2010**, *66*, 8911; d) S. G. Newman, M. Lautens, *J. Am. Chem. Soc.* **2011**, *133*, 1778; e) S. Jaegli, W. Erb, P. Retailleau, J.-P. Vors, L. Neuville, J. Zhu, *Chem. Eur. J.* **2010**, *16*, 5863; f) S. Hayashi, H. Yorimitsu, K. Oshima, *Angew. Chem. Int. Ed.* **2009**, *48*, 7224; *Angew. Chem.* **2009**, *121*, 7360; g) S. G. Newman, J. K. Howell, N. Nicolaus, M. Lautens, *J. Am. Chem. Soc.* **2011**, *133*, 14916; h) X. Jia, D. A. Petrone, M. Lautens, *Angew. Chem. Int. Ed.* **2012**, *51*, 9870; *Angew. Chem.* **2012**, *124*, 10008; i) X. Liu, X. Ma, Y. Huang, Z. Gu, *Org. Lett.* **2013**, *15*, 4814; j) H. Yoon, D. A. Petrone, M. Lautens, *Org. Lett.* **2014**, *16*, 6420; k) M.-B. Zhou, X.-C. Huang, Y.-Y. Liu, R.-J. Song, J.-H. Li, *Chem. Eur. J.* **2014**, *20*, 1843; l) M.S. McCammant, L. Liao, M. S. Sigman, *J. Am. Chem. Soc.* **2013**, *135*, 4167; m) D. A. Petrone, H. Yoon, H. Weinstabl, M. Lautens, *Angew. Chem. Int. Ed.*

**2014**, *53*, 7908; *Angew. Chem.* **2014**, *126*, 8042; n) H. Liu, C. Li, D. Qiu, X. Tong, *J. Am. Chem. Soc.* **2011**, *133*, 6187; o) D. D. Vachhani, H. H. Butani, N. Sharma, U. C. Bhoya, A. K. Shah, E. V. V. Eycken, *Chem. Commun.* **2015**, *51*, 14862; p) C. M. Le, P. J. C. Menzies, D. A. Petrone, M. Lautens, *Angew. Chem. Int. Ed.* **2015**, *54*, 254; *Angew. Chem.* **2015**, *127*, 256.

[3] a) T. Ohshima, K. Kagechika, M. Adachi, M. Sodeoka, M. Shibasaki, *J. Am. Chem. Soc.* **1996**, *118*, 7108; b) K. Kagechika, M. Shibasaki, *J. Org. Chem.* **1991**, *56*, 4093; c) D. Flubacher, G. Helmchen, *Tetrahedron Lett.* **1999**, *40*, 3867; d) B. J. Stokes, L. Liao, A. M. de Andrade, Q. Wang, M. S. Sigman, Org. Lett. **2014**, *16*, 4666; e) X. Wu, H.-C. Lin, M.-L. Li, L.-L. Li, Z.-Y. Han, L.-Z. Gong, *J. Am. Chem. Soc.* **2015**, *137*, 13476.

[4] a) A. Pinto, Y. Jia, L. Neuville, J. Zhu, *Chem. Eur. J.* 2007, 13, 961; b) W. Kong, Q. Wang, J. Zhu, *J. Am. Chem. Soc.* 2015, 137, 16028; c) W. Kong, Q. Wang, J. Zhu, *Angew. Chem. Int. Ed.* 2016, 55, 9714; *Angew. Chem.* 2016, 128, 9866; d) Z. Jiang, L. Hou, C. Ni, J. Chen, D. Wang, X. Tong, *Chem. Commun.* 2017, DOI: 10.1039/C7CC01488K.

[5] For asymmetric reductive-Heck reactions, see: a) A. Minatti, X. Zheng, S. L. Buchwald, J. Org. Chem. 2007, 72, 9253; b) S. Liu, J. Zhou, Chem. Commun. 2013, 49, 11758; c) G. Yue, K. Lei, H. Hirao, J. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6531; Angew. Chem. 2015, 127, 6631; d) W. Kong, Q. Wang, J. Zhu Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201700195.

[6] J. Hu, H. Hirao, Y. Li, J. Zhou, Angew. Chem. Int. Ed. **2013**, *52*, 8676; Angew. Chem. **2013**, *125*, 8838.

 [7] For reviews, see: a) C.-X. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012, 51, 12662; b) C.-X. Zhuo, C. Zheng, S.-L. You, Acc. Chem. Res. 2014, 47, 2558; c) W.-T. Wu, L. Zhang, S.-L. You, Chem. Soc. Rev. 2016, 45, 1570.

[8] For Pd-catalyzed dearomative arylation reactions, see: a) J. García-Fortanet, F. Kessler, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 6676;
b) R. B. Bedford, C. P. Butts, M. F. Haddow, R. Osborne, R. F. Sankey, Chem. Commun. 2009, 45, 4832; c) S. Rousseaux, J. García-Fortanet, M. A. Del Aguila Sanchez, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 9282; d) K.-J. Wu, L.-X. Dai, S.-L. You, Org. Lett. 2012, 14, 3772; e) K.-J. Wu, L.-X. Dai, S.-L. You, Chem. 2013, 49, 8620; f) R.-Q. Xu, Q. Gu, W.-T. Wu, Z.-A. Zhao, S.-L. You, J. Am. Chem. Soc. 2014, 136, 15469
g) K. Du, P. Guo, Y. Chen, Z. Cao, Z. Wang, W. Tang, Angew. Chem. Int. Ed. 2015, 54, 3033; Angew. Chem. 2015, 127, 3076; h) R.-Q. Xu, P. Yang, H.-F. Tu, S.-G. Wang, S.-L. You, Angew. Chem. Int. Ed. 2016, 55, 15137; Angew. Chem. 2016, 128, 15361.

[9] a) L. Zhao, Z. Li, L. Chang, J. Xu, H. Yao, X. Wu, *Org. Lett.* **2012**, *14*, 2066;
b) C. Shen, R.-R. Liu, R.-J. Fan, Y.-L. Li, T.-F. Xu, J.-R. Gao, Y.-X. Jia, *J. Am. Chem. Soc.* **2015**, *137*, 4936; c) K. Douki, H. Ono, T. Taniguchi, J. Shimokawa M. Kitamura, T. Fukuyama, *J. Am. Chem. Soc.* **2016**, *138*, 14578.

[10] a) D. A. Petrone, A. Yen, N. Zeidan, M. Lautens, *Org. Lett.* 2015, *17*, 4838
b) D. A. Petrone, M. Kondo, N. Zeidan, M. Lautens, *Chem. Eur. J.* 2016, *22*, 5684; c) S. Chen, X.-X. Wu, J. Wang, X.-H. Hao, Y. Xia, Y. Shen, H. Jing, Y.-M. Liang, *Org. Lett.* 2016, *18*, 4016; d) R.-R. Liu, T.-F. Xu, Y.-G. Wang, B. Xiang, J.-R. Gao, Y.-X. Jia, *Chem. Commun.* 2016, *52*, 13664.

[11] CCDC 1543558 (**3a31**) containing the supplementary crystallographic data could be obtained free of charge from The Cambridge Crystallographic Data Centre.

#### WILEY-VCH

#### Asymmetric Catalysis

Ren-Rong Liu, Yong-Gang Wang, Ying-Long Li, Bing-Bing Huang, Ren-Xiao Liang, and Yi-Xia Jia\*\_\_\_\_ **Page – Page** 

Enantioselective Dearomative Difunctionalization of Indoles via Palladium-Catalyzed Domino Heck/Sonogashira Sequence



**Dearomative difunctionalization**: A Pd-catalyzed highly enantioselective dearomative arylalkynylation of *N*-substituted indoles with alkynes has been established by using a BINOL-based phosphoramidite as chiral ligand. A wide range of 2,3-disubstitute indolines bearing vicinal tertiary and quaternary stereocenters were efficient constructed in one step with excellent enantioselectivities and diastereoselectivities.