

TETRAHEDRON LETTERS

Palladium-Catalyzed Asymmetric Reduction of Allylic Esters with a New Chiral Monodentate Ligand, 8-Diphenylphosphino-8'-methoxy-1,1'-binaphthyl

Kaoru Fuji,*,^a Minoru Sakurai,^b Takayoshi Kinoshita,^c and Takeo Kawabata^a

^aInstitute for Chemical Research, Kyoto University Uji, Kyoto 611, Japan

^bChemical Research Laboratories, Fujisawa Pharmaceutical Co. Ltd.,

2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan

^cBasic Research Laboratories, Fujisawa Pharmaceutical Co. Ltd.

2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan

Received 25 May 1998; revised 19 June 1998; accepted 26 June 1998

Abstract: A new chiral monodentate ligand, 8-diphenylphosphino-8'-methoxy-1,1'-binaphthyl (8-MeO-MOP), was used for palladium-catalyzed reduction of allylic carbonates with formic acid. Various methylcarbonates of 3,3'-disubstituted allylic alcohols were converted to the corresponding optically active 1-olefins with this ligand. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Asymmetric reactions; Hydrogenolysis; Phosphines; Palladium and compounds

The palladium-catalyzed reduction of allylic esters with formic acid requires a monodentate phosphine ligand.¹ Hayashi and his coworkers reported an asymmetric version of this reaction by using optically active monodentate phosphine ligands such as 2-diphenylphosphino-2'-methoxy-1,1'-binaphthyl (MeO-MOP)² and 3-diphenyl-phosphino-3'-methoxy-4,4'-biphenanthryl.^{2,3} We report here the asymmetric hydrogenolysis of allylic esters using a novel chiral phosphine ligand, 8-diphenylphosphino-8'-methoxy-1,1'-binaphthyl (8-MeO-MOP, 1). A highly dissymmetric environment is created around the substituents at C-8 and C-8' in 1, since one side of each substituent is completely blocked by another naphthyl ring in the molecule.⁴

Recently, we demonstrated the potential use of 8,8'-dihydroxy-1,1'-binaphthyl (2) in asymmetric protonation with carbamate 3,⁵ in the highly enantioselective synthesis of β -substituted ketones *via* tandem 1,4and 1,2-addition of Gilman reagents to half-esters 4,⁶ and in the diastereoselective Diels-Alder reactions of 5.⁷ Recently, Meyers *et al.* reported interesting behavior to atropisomerization of an 8,8'-dioxazolynyl-1,1'binaphthyl and its use for the copper-catalyzed asymmetric cyclopropanation of styrene by ethyl diazoacetate.⁸ The highly dissymmetric environment of **2** was also demonstrated in the chiral recognition of amino acid derivatives.⁹ Although the lone pair of the phosphorous atom in 1 seems to be too hindered to coordinate to the palladium, the activity of racemic **1** as a ligand for a palladium-catalyzed reaction has been proven.¹⁰ Since the attempted synthesis of optically active 8-MeO-MOP (1) via a phosphine oxide by a route similar to that reported for the synthesis of the corresponding 2,2'-series by Hayashi *et al.*¹¹ encountered complete racemization at the phosphinoylation step,¹² we adopted a nickel-catalyzed coupling reaction between diphenylphosphine and racemic triflate **6** derived from racemic **2** (Scheme 1). The coupling reaction followed by hydrolysis gave the

Scheme 1. Synthesis of Optically Active 8-MeO-MOP (1)

phosphine 7, which was converted into a mixture of diastereomers 8 and 9 upon acylation with (1*S*)-camphanic chloride in quantitative yield. Chromatographic separation of this mixture gave pure 8 and 9 in respective yields of 49%. The absolute configuration of the binaphthyl moiety in 9 was determined to be of *R* by an X-ray analysis.¹³ Basic hydrolysis of 9 followed by methylation gave (*R*)- 1^{14} in 54% overall yield after recrystallization from ^{*i*}PrOH.

10	Pd ₂ (dba) ₃ •CHCl ₃ (0.01 eq) 11 12 13 HCOOH (2.2 eq) 11 12 13 proton sponge (1.2 eq), r.t.							
entry	R	solvent	reaction time (h)	11 : 12 : 13	yield of 11 %	% ee of 1 1		
1	OPh	DMF	20	95:2:3	92	73		
2	O'Bu	DMF	258	92:5:3	54 ^a	61		
3	Me	DMF	333	-	b	-		
4	NHTs	DMF	244	93:7:0	51	77		
5	OMe	DMF	38	94:2:4	80	77		
6	OMe	NMP ^c	35	94:2:4	79	82		
7	OMe	CH ₃ CN	41	98:1:1	85	67		
8	OMe	CH_2Cl_2	42	90:1:9	76	59		
9	OMe	THF	135	85:1:14	69	77		
10	OMe	toluene	272	76:1:23	42 ^d	67		

Table 1. Palladium-Catalyzed Asymmetric Reduction of 10 with (R)-1 as a Chiral Ligand.

^aA 34% of starting material was recovered. ^bA 95% of starting material was recovered. ^c1-Methyl-2pyrrolidone. ^dA 36% of starting material was recovered.

ſ

Palladium-catalyzed hydrogenolysis was performed using **10** as a standard substrate. The results are listed in Table 1. The S-configuration and the enantiomeric excess (ee) of **11** were determined for 14^{15} obtained by oxidation with KMnO₄-NaIO₄ and **15** obtained by hydroboration. Phenylcarbonate and methylcarbonate gave the desired product **11** in good yield (entries 1, 5-8). 1-Methyl-2-pyrrolidone (NMP) was a solvent of choice (entry 6). Hünig's base gave a yield comparable to the proton sponge. A standard procedure for asymmetric hydrogenolysis derived from the above studies was applied to substrates **18** with an aromatic ring at C-3. The results are summarized in Table 2. A higher ee was observed on allylic esters with an *ortho*-substituent on the aromatic ring (entries 1, 4-6).

According to the accepted mechanism^{16,17} a key intermediate in the hydrogenolysis of **10** is the π allylpalladium formate **16** or **17**, which in turn affords S-11 or R-11, respectively, via intramolecular hydride transfer. Although the attempted isolation of the palladium complex **16** or **17** was unsuccessful, crystals of PdCl(η^3 -allyl)(8-MeO-MOP)•1/2Et₂O (**20**) were obtained when a mixture of [PdCl(π -allyl)]₂ and (R)-1 was kept for four weeks in THF under an atmosphere of Et₂O. The X-ray crystal structure of **20** is shown in Figure 1. The crystal turned out to be racemic, even though we used optically pure (R)-1 as a starting material. Since C(36) is more hindered than C(34), the unsubstituted terminal should be located cis to the phosphine ligand. Since (S)-11 was obtained from the reaction with (R)-1 as a ligand, the possible intermediate should be **16** rather than **17**. These considerations suggest that the absolute configuration of **19** must be S, although there is no direct chemical evidence.

Ar	<u>∕_ocoo</u> l	Me (R)-1, Pd ₂ (dba) ₃ •CH(Cl ₃ Ar	\checkmark	
R 18		нсос	OH, proton sponge,	NMP	MP R 19	
entry	/ Ar	R	reaction time (h)	yield %	% ee	
1	\bigcirc	Et	160	67	84	
2	\bigcirc	Me	23	58	41	
3	Me	Me	44	41	55	
4		Me	156	54	84	
5		Me	19	80	69	
6		Me	96	65	86	

Table 2. Palladium-Catalyzed Asymmetric Reduction of Allylic Esters.

Figure 1. X-ray Crystal Structure of 20. A molecule of ether and all hydrogen atoms have been omitted.

In conclusion, we have introduced the basic structure of a new chiral ligand for palladium-catalyzed hydrogenolysis, although fine-tuning by structural modification is required to improve the ee and to extend its usefulness.

References

- 1. For a review: J. Tsuji and T. Mandai, Synthesis 1996, 1-24.
- 2. T. Hayashi, H. Iwamura, M. Naito, Y. Matsumoto, Y. Uozumi, M. Miki, and K. Yanagi, J. Am. Chem. Soc. 1994, 116, 775-776, and references cited therein.
- a) T. Hayashi, H. Iwamura, Y. Uozumi, Y. Matsumoto, and F. Ozawa, *Synthesis* 1994, 526-532. b) For the reductive deracemization of allylic ester: T. Hayashi, M. Kawatsura, H. Iwamura, Y. Yamamura, and Y. Uozumi, *Chem. Commun.* 1996 1767-1768.
- 4. For further discussion, see: A. I. Meyers and M. J. Mckennon, Tetrahedron Lett. 1995, 5869-5872.
- 5. K. Fuji, T. Kawabata, and A. Kuroda, J. Org. Chem. 1995, 60, 1914-1915.
- 6. K. Fuji, X. Yang, K. Tanaka, N. Asakawa, and X. Hao, Tetrahedron Lett. 1996, 37, 7373-7376.
- 7. K. Tanaka, N. Asakawa, M. Nuruzzaman, and K. Fuji, Tetrahedron: Asymmetry 1997, 8, 3637-3645.
- 8. A. I. Meyers and A. Price, J. Org. Chem. 1998, 63, 412-413.
- 9. T. Kawabata, A. Kuroda, E. Nakata, K. Takasu, and K. Fuji, Tetrahedron Lett. 1996, 37, 4153-4156.
- 10. K. Fuji, M. Sakurai, T. Kinoshita, T. Tada, A. Kuroda, and T. Kawabata, *Chem. Pharm. Bull.* 1997, 45, 1524-1526.
- 11. Y. Uozumi, A. Tanahashi, S.-Y. Lee, and T. Hayashi, J. Org. Chem. 1993, 58, 1945-1948.
- 12. K. Fuji, M. Sakurai, N. Tohkai, A. Kuroda, T. Kawabata, Y. Fukazawa, T. Kinoshita, and T. Tada, *Chem. Commun.* **1996**, 1609-1610.
- 13. Crystal structure analyses: 9: $C_{42}H_{35}O_4P$, orthorhombic, $P2_12_12_1$, a = 16.458(2) Å, b = 22.265(6) Å, c = 9.363(2) Å, V = 3431(2) Å³, Z = 4, $\rho_{calcd} = 1.229$ g cm⁻³, R = 0.043. **20**•Et₂O: C₃₈H₃₅ClO_{1.5}PPd, prismatic, P1, a = 10.4305(6) Å, b = 15.7679(9) Å, c = 9.7065(6) Å, V = 1580.3(2) Å³, Z = 2, $\rho_{calcd} = 1.447$ g cm⁻³, R = 0.043. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-101232. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: int. code +(1223)336-033; e-mail: deposit@chemcrys.cam.ac.uk).
- 14. Mp. 79-80 °C; $[\alpha]_D^{17}$ -452.9 (c, 0.5, CHCl₃); ¹H NMR (CDCl₃) δ 3.04, (s, 3H), 6.55 (dd, J = 1.2, 7.7 Hz, 1H), 6.65-6.89 (m, 5H), 7.04-7.52 (m, 13H), 7.79 (dd, J = 1.5, 8.6 Hz, 1H), 7.87 (dt, J = 1.4, 8.0 Hz, 1H), 7.94 (dd, J = 1.4, 8.1 Hz, 1H). Anal. Calcd for C₃₃H₂₅OP: C, 84.60; H, 5.38; P, 6.61. Found: C, 84.61; H, 5.35; P, 6.73. Enantiomeric excess was determined to be >99% by HPLC (CHIRALCEL OD, hexane : 'PrOH = 99.8 : 0.2).
- 15. A. Fredga, Arkiv Kemi 1955, 8, 463-468.
- 16. R. O. Hutchins and K. Learn, J. Org. Chem. 1982, 47, 4380-4382.
- 17. M. Oshima, I. Shimizu, A. Yamamoto, and F. Ozawa, Organometallics 1991, 10, 1221-1223.