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Triarylmethanes are attractive targets because of their
applications in medicinal and materials chemistry.[1–7] For
example, several triarylmethanes have emerged as promising
pharmacological agents for treating cancer,[2] bacterial infec-
tion,[3] and diabetes (Scheme 1).[4] Triarylmethanes also have
applications as dye precursors,[5] photochromic agents,[6] and
reagents in material science.[7] The triarylmethine moiety can
also be found as a core structure in natural products such as
cassigarol B.[8] The classical approach to synthesize these
compounds relies on Friedel–Crafts reactions.[9–12] Despite
recent advances using chiral Brønsted acids and directed C�H
activation reactions,[13,14] the asymmetric synthesis of triaryl-
methanes remains challenging. We envisioned an approach
based on the stereospecific cross-coupling methodology
recently developed in our laboratory.[15,16] Herein we describe
the synthesis of enantioenriched triarylmethanes by cross-
coupling reactions of diarylmethanol derivatives, which are
easily prepared by a variety of asymmetric methods.[17]

At the outset, we found that direct application of our
previously reported method was unsatisfactory for triaryl-
methane synthesis.[18] The reaction of methyl ether 1a with an
aryl Grignard reagent in the presence of [Ni(cod)2] and

DPEphos provided triarylmethane 2 with low enantiospeci-
ficity (Table 1, entry 1).[19] All other ligands examined
resulted in unacceptably low conversion of starting material
1a (Table 1, entries 2–4).[20] The use of other catalysts,
including those based on palladium and copper, did not lead
to the desired reactivity.[21] We concluded that few catalysts
are able to undergo efficient oxidative addition with 1a. This
limitation restricts our ability to optimize the catalyst toward
reducing deleterious side reactions, which include racemiza-
tion of the putative alkylnickel intermediate[22] and formation
of products 3, which are derived from homocoupling.[23]

However, we considered that a substrate that was more
active toward oxidative addition would overcome this limi-
tation. We were encouraged to test this hypothesis because
the use of certain catalysts led to reactions with promising

Scheme 1. Biologically relevant triarylmethanes.

Table 1: Effect of chelating leaving groups.

Entry Ether R Ligand Yield 2
[%][a]

es 2
[%][b]

Yield 3
[%][a]

1[c, d] (S)-1a

Me

DPEphos 56[e] 33 18[e, f ]

2[d] (�)-1a rac-BINAP <2 – 26
3[d] (�)-1a dppf 3 – 10
4[d] (S)-1a dppb 14 93 <2

5 (�)-1b DPEphos <2 – <2

6[g] (�)-1c DPEphos 67 – 16

7 (S)-1d DPEphos 69[e] 46 17[e, f ]

8[d] (S)-1d dppb 67 93 3
9[h] (S)-1d dpppent 73 >99 <2
10[h] (S)-1d dpph >95 >99 <2
11[h] (S)-1d dppo 84 >99 <2
12[h, i] (�)-1d MePh2P 12 – <2
13[h, i] (S)-1d Ph3P 90 94 5

[a] Determined by 1H NMR analysis using an internal standard
(PhSiMe3). [b] Enantiospecificity (es) = eeproduct/eestarting material � 100%.
Determined by SFC chromatography using a chiral stationary phase.
[c] 40 8C. [d] 5 mol% [Ni(cod)2], 10 mol% ligand. [e] Yield after chro-
matography. [f ] Dimer 3 was isolated as a mixture of racemic and meso
stereoisomers. [g] Enantiomers of (�)-1c are not separable by SFC
chromatography using a chiral stationary phase. [h] [Ni(acac)2] substi-
tuted for [Ni(cod)2]. [i] 40 mol% ligand. acac = acetylacetonate,
cod = 1,5-cyclooctadiene, Nap = 2-naphthyl, definitions of ligands are
given in Ref. [24].
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enantiospecificity, albeit the products were obtained in low
yield (Table 1, entry 4).[24]

We considered activating the ether to accelerate the
oxidative addition step, thus leading to reactions that could be
promoted with a broad range of catalysts. We were attracted
to the use of a directing group to increase the reaction rate,[25]

as certain nickel-catalyzed cross-coupling reactions benefit
from a strategically positioned functional group on the
substrate.[26, 27] For example, the presence of pendant carbox-
ylates accelerate transmetalation of nickel thiolates during
the cross-coupling of thioethers with arylzinc reagents.[28] We
postulated that coordination of the ether to a magnesium
Lewis acid would accelerate cleavage of the benzylic C�O
bond (Scheme 2).[29] We designed ethers that contain pendant
Lewis bases capable of magnesium-ion chelation. Impor-
tantly, this strategy would provide traceless activation of the
substrate, as the directing group is excised during the reaction
and is thus not present in the product.

We were pleased to find that substrates 1c and 1d, which
contain pendant dimethylamino and methoxy groups, respec-
tively, were converted into product in improved yield
compared to non-chelating substrate 1a (Table 1, entries 6–
7). In the presence of a range of ligands and either [Ni(cod)2]
or [Ni(acac)2], methoxyethyl ether 1d gave a high yield of
product 2 and was therefore selected for further study. As
found above, the use of DPEphos resulted in a reaction of low
enantiospecificity and gave significant quantities of dimer 3
(Table 1, entry 7). However, the use of ligands in the
bis(diphenylphosphino)alkane series gave reactions of very
high enantiospecificity (Table 1, entries 8–11);[30] the use of
the catalyst derived from [Ni(acac)2] and dpph led to
complete conversion of 1d into triarylmethane 2 with no
detectable products derived from homocoupling (Table 1,
entry 10). Triphenylphosphine was also an effective ligand for
the cross-coupling reaction, although the enantiospecificity of
the reaction is slightly lower (Table 1, entry 13). Bis(diphe-
nylphosphino)alkanes were therefore selected as ligands for
subsequent studies.

Having established optimal reaction conditions, we exam-
ined the scope of the reaction with respect to the aryl
Grignard reagent (Table 2). In general, the reaction of
substrates containing extended aromatic moieties proceed
with very high enantiospecificity. Although the use of
2-methoxyethyl ether 1d led to optimal yields of product,
methyl ether 1a underwent cross-coupling with a variety of
Grignard reagents with high enantiospecificity and gave
products in slightly lower yields.[31] For the majority of
Grignard reagents examined, dppo was found to be the
optimal ligand, although when para-methoxyphenylmagne-

sium bromide is used, dpph was the best ligand (Table 2,
entry 3). Whereas the use many of the Grignard reagents
work well in the presence of [Ni(acac)2], some gave better
yields when [Ni(cod)2] was used (Table 2, entries 5 and 6);
[Ni(cod)2] had a more general scope with respect to the
Grignard reagent. We were pleased to find that the presence
of a dimethylamino group was tolerated (Table 2, entry 4);
thiophene and benzothiophene-based Grignard reagents
were also tolerated (Table 2, entries 7 and 8). A phenan-
threne-derived substrate also underwent cross-coupling,
although the reaction was relatively slow, presumably owing
to steric congestion in the product (Table 2, entries 9 and 10).
Nevertheless, the reactions were highly enantiospecific,
including the reaction where 2-naphthylmagnesium bromide
was used as the Grignard reagent, although mild heating was
required for this reaction to proceed.[32]

The cross-coupling reaction proceeds with inversion of
configuration at the methine carbon. The absolute configu-
ration of the alcohol (S)-4 was determined by comparison of
the measured optical rotation to a literature value
(Scheme 3).[33] After alkylation of (S)-4 and cross-coupling
of the resulting ether with 2-thienylmagnesium bromide, the
configuration of the product, triarylmethane 5, was deter-
mined to be R by X-ray crystallographic analysis.[34] This
stereochemical outcome is consistent with an oxidative
addition that occurs with inversion of configuration.[35]

To demonstrate the utility of the cross-coupling method,
we synthesized an enantioenriched biologically active triaryl-
methane (Scheme 4). Racemic triarylmethane 8, an analogue

Scheme 2. Design of a chelating leaving group to activate C�O bonds
toward oxidative addition

Table 2: Scope of Cross-Coupling Reaction.

Entry Product Ar3 Yield
[%][a]

S.M.[b]

ee [%]
Prod.[b]

ee [%]
es[c]

[%]

1 Ph 82 N/A N/A
N/
A

2 p-MeC6H4 86 93 91 98
3[d] p-MeOC6H4 88 93 92 99
4 p-

(Me2N)C6H4

68 93 91 98

5[e, f ] p-FC6H4 92 93 91 98
6[e] m-

MeOC6H4

77 93 90 97

7 97 93 92 99

8[e, g] 83 93 87 94

9[e, f ] 85 81 74 92

10[e, f, g] 56 81 69 85

All data are averages of two experiments. [a] Yield after chromatography.
[b] Determined by SFC chromatography using a chiral stationary phase.
[c] Enantiospecificity (es) = eeproduct/eestarting material � 100%. [d] dpph was
used in place of dppo. [e] [Ni(cod)2] was used in place of [Ni(acac)2].
[f ] Reaction run for 72 h. [g] Reaction run at 40 8C. N/A = not applicable,
Prod. = product, S.M.= starting material.
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of tamoxifen, was reported to have anti-breast-cancer activity
in the form of an IC50 value of 3.88 mm against MCF-7 breast
cancer cells; promising activity in vivo was also demon-
strated.[2] We prepared the enantioenriched ether 6 through
asymmetric arylation followed by alkylation.[17d] Subjection of
6 to our cross-coupling reaction conditions gave triaryl-
methane 7 in good yield and enantiospecificity.[36] Deprotec-
tion and alkylation of 7 gave the target triarylmethane 8. This
approach is highly modular: a variety of aryl Grignard
reagents can be used in the cross-coupling reaction and
a variety of aminoalkyl groups can be appended in the last
step to afford a library of enantioenriched analogues of 8.

In summary, we have developed a nickel-catalyzed cross-
coupling reaction for the synthesis of enantioenriched triaryl-
methanes. The substrates are diarylmethanol derivatives,

which are easily synthesized by the asymmetric arylation of
aldehydes. A variety of aryl Grignard reagents can be used in
the cross-coupling reaction, which proceed with high enan-
tiospecificity. The method was applied to the asymmetric
synthesis of an anti-breast-cancer agent. Studies to further
expand the scope of this reaction and elucidate the mecha-
nism are underway.

Experimental Section
Representative procedure for cross-coupling reactions (Table 2,
entry 1): In a glovebox, nickel(II) acetylacetonate (5.1 mg,
0.020 mmol, 0.10 equiv), 1,8-bis(diphenylphosphino)octane (19 mg,
0.040 mmol, 0.20 equiv), and PhMe (1.6 mL) were added to a 7 mL
vial. The reaction mixture was stirred for 10 min and ether (�)-1d
(58 mg, 0.20 mmol, 1.0 equiv) was added. The vial was removed from
the glovebox and phenylmagnesium bromide (0.20 mL, 0.40 mmol,
2.0m in Et2O, 2.0 equiv) was added dropwise. The reaction mixture
was stirred for 48 h before quenching with 2-propanol (1.5 mL). The
solution was eluted through a plug of silica and concentrated in vacuo.
The residue was purified by flash column chromatography through
silica gel (0–3% Et2O/pentane) to afford 2-benzhydrylnaphthalene as
a white solid. First run: 50.3 mg (86%). Second run: 46.1 mg (79%).
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Synthesis of Enantioenriched
Triarylmethanes by Stereospecific Cross-
Coupling Reactions Coupling with inversion : Chiral diarylme-

thanol derivatives undergo a stereospe-
cific nickel-catalyzed cross-coupling
reaction with aryl Grignard reagents (see
scheme). The reaction proceeds with

inversion of configuration and high
enantiospecificity. The method has been
applied to the asymmetric synthesis of
a triarylmethane-based anti-cancer com-
pound.
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