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Asymmetric Direct Aldol Reactions Catalyzed by
a Simple Chiral Primary Diamine–Brønsted Acid

Catalyst in/on Water
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Abstract: The direct asymmetric aldol reaction catalyzed by the simple and
commercially available chiral primary diamines, (1S,2S)-1,2-diphenylethane-1,2-
diamine and (1R,2R)-1,2-diphenylethane-1,2-diamine, is presented. The catalyst
system is a primary amine with Brønsted acid–catalyzed direct aldol reaction of
p-nitrobenzaldehyde and cyclohexanone with high chemo- and stereoselectivity
on water, which furnishes the corresponding b-hydroxyketone with up to 94% ee.

Keywords: Aldol, asymmetric catalysis, organocatalysis, primary amine, water

INTRODUCTION

The asymmetric aldol reaction is plausibly an ancient transformation and
one of the most powerful methods for the constructing carbon–carbon
bonds in organic synthesis.[1] Organometallic complexes and Lewis
base–based catalysts have been highly successful for the asymmetric aldol
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reaction of unmodified ketone and Mukaiyama-type silyl enol ethers in
the past decades.[2] Recently, the development of organocatalytic stereo-
selective methods for asymmetric direct aldol reactions has been a subject
of intense research. Since the pioneering work of List and coworkers in
2000,[3] the proline and its derivatives are arguably that the most efficient
and versatile small organic ‘‘enzymes’’ that catalyze a wide range of
organic transformations. There have been numerous reports on direct
aldol reactions catalyzed by proline and its structural analogs that utilize
the enamine mechanism,[4] which showes organocatalysis has experienced
a renaissance in homogeneous catalysis and green chemistry.[5]

Currently, the use of water as solvent for asymmetric reactions is of
great interest because of the low cost, safety, and environmentally benign
nature of water.[6] However, the proline-catalyzed aldol reactions can
only afford moderate to high enantioselectivity in organic solvents, and
the presence of a large amount of water resulted in the formation of pro-
ducts with low or no enantioselectivity.[3] Recently, Hayashi et al. showed
that direct asymmetric aldol reaction could be carried out with excellent
enantioselectivity in water by employing proline-derivated organocata-
lysts.[7] Then the groups of C�oodrova and Lu demonstrated that primary
amino acids such as alkaline and tryptophan could catalyze the aldol
reaction with good enantioselectivity in the presence of water.[8] The
recent progress with aqueous primary amino acid[8h] and diamine–
Brønsted acid–catalyzed asymmetric aldol reactions[9], created great
demand to study and develop novel, cheap, and simple amine catalysts
in organic reactions. In our continuing interest in the development
of organocatalytic protocols for carbon–carbon bond-forming transfor-
mation,[10] we report herein a simple chiral primary diamine–catalyzed
direct aldol reaction with excellent stereoselectivity in=on water.

RESULTS AND DISCUSSION

Although the simple and commercially available chiral primary diamine
(1S,2S)-1,2-diphenylethane-1,2-diamine (2)–catalyzed aldol reaction in
the absence of any Brønsted acids has been explored by C�oordova et al.,
only low conversion (23% yield) with poor enantioselectivity (12% ee)
was achieved after 3 days in the aldol reaction of p-nitrobenzaldehyde with
cyclohexanone in wet dimethyl sulfoxide (DMSO). We reasoned that the
by-product Shiff base was produced, which resulted in very low catalytic
activity. It is hypothesized that primary diamine (Scheme 1, 1 or 2) might
be an efficient aldol catalyst in the presence of Brønsted acid in water.

In our initial study, we investigated the catalytic effects of chiral
primary diamine (1) with various Brønsted acids in the direct aldol
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reactions between cyclohexanone and p-nitrobenzaldehyde in water. As
shown in Table 1, among the Brønsted acids tested, D-camphorsulfonic
acid, p-toluenesulfonic acid (TsOH), and trifluoromethanesulfonic acid
(TfOH) were suitable Brønsted acids in this reaction (entries 1–4), and
TfOH was best additive for the aldol reaction. 20 mol% of TfOH enabling

Table 1. Screening results of aldol reaction with diamine–Brønsted acid catalyst

Entrya Solvent Brønsted acid Time (h) Yield (%)b Anti=sync Ee (%)d

1 H2O D-CSA 48 90 3:1 91
2 H2O TsOH 24 95 6:1 80
3 H2O TsOHe 24 37 6:1 81
4 H2O TfOH 12 92 9:1 94
5 H2O TfOHe 12 45 9:1 93
6 CH2Cl2 D-CSA 48 Trace — —
7 Solvent free D-CSA 48 30 0.6:1 37
8 PEG-600 D-CSA 48 55 0.6:1 78
9 PEG-600=H2Of D-CSA 48 68 5:1 92

10 H2O TfOH 12 92 9:1 �94g

11 H2O TfOH 12 40 1:1 90h

12 H2O TfOH 12 85 3:1 93i

aThe reactions were performed with 1.0 mmol of p-nitrobenzaldehyde, 10 equiv.
of cyclohexanone, 10 mol% of (R,R)-diamine catalyst (1), 20 mol% Brønsted acid,
2 mL of H2O, at room temperature.

bIsolated yield.
cDetermined by H NMR analysis of the products.
dThe ee % of anti-products.
e10 mol% of TsOH was used.
fPEG-600=H2O¼ 1:1 (1mL=1mL).
gUsing 10 mol% of (S,S)-diamine catalyst (2).
hUsing 1 mol% of catalyst.
iUsing 5 mol% of catalyst.

Scheme 1. The structure of (1S,2S)-1,2-diphenylethane-1,2-diamine and (1R,2R)-
1,2-diphenylethane-1,2-diamine.
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the completion of reaction in 12 h (entry 4, 92% yield, 94% ee). With
10 mol% of Brønsted acid, the desired product was obtained in lower yield
(entries 3 and 5), which confirmed the importance of Brønsted acid for pri-
mary amine-catalyzed aldol reaction. The role of Brønsted acid is probably
related to its possible function in facilitating the enamine catalytic cycle.[11]

The enantioselectivity of primary diamine (1) catalyzed aldol reaction was
dramatically affected by solvent, low conversions with poor enantioselec-
tivities were exhibited under solvent free conditions and in CH2Cl2 (entries
6 and 7), and notably, the aldol reaction performed under solvent-free con-
ditions favored the syn -isomer. More interestingly, PEG-600 mediated the
priamine-catalyzed aldol reaction with moderate yield (55%), and syn-iso-
mer is the major aldol product with good enantioselectivity (entry 8, anti-
=syn¼ 0.6:1, 67% ee for syn- and 78% ee for anti-product respectively). The
addition of water (PEG=H2O¼ 1=1) increased the conversion and stereo-
selectivity of aldol reaction obviously (entry 9), which clearly showed the
importance of water in primary diamine (1)–TfOH catalyzed aldol reac-
tion. Under the best-screened conditions, the loading of catalyst could
be reduced to 5 mol% while still maintaining excellent enantioselectivity
and quite significant activity (entry 12).

We also investigated the relationship between the enantiomeric
excess of the aldol product, derived from the aldol reaction shown in
Scheme 2, and the optical purity of the chiral diamine (1). Plotting the
enantiomeric excess of diamine versus that of b-hydroxy ketone 3 showed
a linear correction (Figure 1). Our results supported the supposition that
only one molecular primary diamine and two TfOH molecules catalyzed

Scheme 2. Primary amine-catalyzed direct aldol reaction of cyclohexanone and
p-nitrobenzaldehyde.
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asymmetric aldol reaction. This correlation together with previous
theoretical findings by Allemann et al.[12] for amino acid–catalyzed aldol
reactions suggested that enamine mechanism is more favorable (Figure 2).

Figure 1. Relation between the enantiomeric excess of (1R,2R)-1,2-diphenyl-
ethane-1,2-diamine and that of the aldol product 3 in the catalytic direct aldol
reaction.

Figure 2. Proposed transition state for the aldol reaction of cyclohexanone.
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Encouraged by these results, we also investigated the primary diamine–
TfOH–catalyzed aqueous asymmetric aldol reaction for a set of different
aldehydes and cyclic ketones on water (Scheme 3 and Table 2). We found
that the primary diamine–TfOH mediated the enantioselective aldol
reactions of cyclohexanone and various aromatic aldehydes with excellent
enantioselectivities, giving the corresponding aldol products with 89–93%
ee (entries 2–5). Unfortunately, the yields of aldol reactions of cyclohexa-
none and aromatic aldehydes without electron-deficient substituents is
low; moreover, acyclic ketones, such as acetone and acetophenone, were
bad donors and the aldol reaction did not occur. Hence, the primary
diamine–TfOH exhibited substrate specificity in the aldol reaction.

In summary, we have shown that simple primary diamines, (1S,2S)-
1,2-diphenylethane-1,2-diamine and (1R,2R)-1,2-diphenylethane-1,2-
diamine, can catalyze the asymmetric aldol reaction in the presence of
Brønsted acid on water. Excellent enantioselectivities were achieved in

Scheme 3. Primary amine-catalyzed direct aldol reactions.

Table 2. (R,R)-Diamine (1)-catalyzed direct aldol reactions of several substrates
on watera

Entry R R1, R2 Yield (%)b Anti=sync Ee(%)d Ref.

1 p-NO2 CH3,H NRe — —
2 o-Cl -(CH2)4- 22 20:1 93 13b
3 p-Br -(CH2)4- 28 3:1 90 13c
4 P-Me -(CH2)4- 20 3:1 89 13d
5 p-MeO -(CH2)4- 15 19:1 90 13e
6 p-NO2 -(CH2)3- 58 1=1.3 64 13f
7 o-NO2 -(CH2)4- 39 3:1 72 13g
8 o-NO2 -(CH2)3- 48 1.4=1 45 13h

aThe reactions were performed with 1.0 mmol of aldehyde, 10 equiv. of ketone,
10 mol% of (R,R)-diamine catalyst (1), 20 mol% TfOH, 2 mL of H2O, at room
temperature, for 4 days (entries 1–5) or 1 day (entries 6–8).

bIsolated yield.
cDetermined by H-NMR analysis of the products.
dThe ee% of anti-products.
eNR: no reaction.
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the aldol reaction of cyclohexanone and p-nitrobenzaldehyde with up to
94% ee and 92% yield. Notably, the presence of water both accelerated
the reaction and improved the enantioselectivity, which suggests hydrogen
bonding is of significant importance in the transition state. The mechanism
and the transition-state model have been discussed on the basis of stereo-
chemistry of the aldol products and enantiomeric excess relationships.

EXPERIMENTAL

All reagents and solvents were used directly without purification. Flash-col-
umn chromatography was performed over silica (200–300 mesh). 1H NMR
and 13C NMR spectra were recorded at 400 and 100 MHz, respectively, and
were referenced to the internal solvent signals. Infrared (IR) spectra
were recorded using a Fourier transform infrared (FTIR) apparatus.
Thin-layer chromatography (TLC) was performed using silica-gel F254

TLC plates and visualized with ultraviolet light. High pressure liquid chro-
matography (HPLC) was carried out with a Waters 2695 Millennium
with photodiode array detector. All the aldol products were known[13]

and confirmed by gas chromatography-mass spectrometry (GC-MS) and
usual spectral methods (NMR and IR).

General Procedure for Aldol Reactions

A catalytic amount of (1R,2R)-1,2-diphenylethane-1,2-diamine (10 mol%)
was added to a vial containing 4-benzaldehyde (0.5 mmol), cyclohexa-
none (2.5 mmol), TfOH (20 mol%), and 2 mL of water. After vigorous
stirring at room temperature for the times shown in the tables, the reac-
tion mixtures was poured into an extraction funnel containing brine and
then diluted with distilled water and EtOAc. The aqueous phase was
extracted with EtOAc. The combined organic phases were dried with
Na2SO4, and the solvent was removed under reduced pressure. The crude
product was purified by silica-gel column chromatography to furnish the
desired aldol products. The ees of the aldol products were determined by
chiral-phase HPLC analysis.

Data

(2 R,10S)-2-[10-Hydroxy-10-(4-nitrophenyl)methyl]cyclohexan-1-one
(Table 1)[8,13a]

1H NMR (400 MHz, CDCl3) (ppm): d¼ 1.32–1.72 (m, 4H), 1.80–1.88 (m,
1H), 2.08–2.15 (m, 1H), 2.32–2.41 (m, 1H), 2.47–2.51 (m, 1H), 2.56–2.61

770 L. Li et al.
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(m, 1H), 4.08 (br s, 1H), 4.89–4.91 (d, J¼ 8.4 Hz,1H), 7.49–7.52 (m, 2H),
8.19–8.23 (m, 2H). ee was determined by HPLC analysis (Chiralpak
OJ-H, hexane–2-PrOH¼ 70:30, 0.8 mL=min, 254 nm, 25 �C. Anti-
diastereomer: tr (minor)¼ 12.91 min, tr (major)¼ 14.94 min.

(2 R,10S)-2-[10-Hydroxy-10-(4-nitrophenyl)methyl]cyclopentan-1-one
(Table 2, Entry 6)[13f]

1H NMR (400 MHz, CDCl3) (ppm): 1.46–1.59 (m, 1H), 1.70–1.77 (m,
2H), 2.01–2.04 (m, 1H), 2.24–2.30 (m, 1H), 2.38–2.40 (m, 1H), 2.44–
2.49 (m, 1H), 4.72 (brs, 1H), 4.84–4.86 (d, J¼ 9.2 Hz, 1H), 7.51–7.55
(d, J¼ 8.6 Hz, 2H) 8.21–8.22 (d, J¼ 8.8 Hz, 2H). Ee was determined by
HPLC analysis (Chiralpak AS-H, hexane–2-PrOH¼ 85:15, 1 mL=min,
254 nm, 25 �C Anti-diastereomer: tr (major)¼ 23.86 min, tr (minor)¼
30.98 min).

(2 R,10S)-2-[10-Hydroxy-10-(2-nitrophenyl)methyl]cyclohexan-1-one
(Table 2, Entry 7)[13g]

1H NMR (400 MHz, CDCl3) (ppm): 1.53–1.73 (m, 4H) 1.73–1.78 (m, 1H)
1.82–1.86 (m, 1H), 2.33–2.34 (m, 1H), 2.42–2.43 (m, 1H), 2.76–2.77 (m,
1H), 4.17 (brs, 1H), 5.43–5.45 (d, J¼ 7.2 Hz,1H), 7.40–7.44 t,J¼ 8.0 Hz,
1H), 7.61–7.65 (t, J¼ 7.6 Hz, 1H), 7.75–7.77 (d, J¼ 7.6 Hz, 1H)
7.84–7.85 (d, J¼ 8.4 Hz,1H). Ee was determined by HPLC analysis
(Chiralpak AD-H, hexane–2-PrOH¼ 95:5, 1–mL=min, 254 nm, 25 �C.
Anti-diastereomer: tr (minor)¼ 36.28 min, tr (major)¼ 38.06 min).

(2 R,10S)-2-[10-Hydroxy-10-(2-nitrophenyl)methyl] cyclopentan-1-one
(Table 2, Entry 8)[13h]

1 H NMR (400 MHz, CDCl3) (ppm): 1.72–1.78 (m, 3H), 2.01–2.05 (m, 1H),
2.34–2.79 (m, 3H), 5.42–5.44 (d, J¼ 8.4 Hz, 1H), 7.44–7.53 (m, 1H), 7.66
(m, 1H), 7.79–7.85 (m, 2H). Ee was determined by HPLC analysis
(Chiralpak OD-H, hexane–2-PrOH¼ 95:5, 1 mL=min, 254 nm, 25 �C Anti-
diastereomer: tr (minor)¼ 26.90 min, tr (major)¼ 30.38 min, 82% ee. 25 �C.
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