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Summary of main observation and conclusion Isoplagiochin D is a ring-strained macrocyclic bisbibenzylis, which showed stable axial chirality in one biaryl 
structure, and semistable axial chirality in the other biaryl moiety. We reported here an unprecedented example for the catalytically asymmetric synthesis 
of ring-strained atropisomers via Pd-catalyzed macrocyclization between benzyl halides and carbenes. This newly developed Pd-catalyzed asymmetric 
macrocyclization protocol enabled us a quick synthesis of isoplagiochin D in a highly enantioselective manner. 

 

Background and Originality Content 
Biaryl natural products bearing strong strain bridged-rings 

usually showed atropisomerism, whose rotation around the aryl-
aryl single bond was inhibited. Many representatives of these 
natural products, such haouamine A and vancomycin, exhibit 
remarkable bioactivities. The macrocyclic bisbibenzylis 
isoplagiochin C (1a) and isoplagiochin D (1b) were isolated from the 
liverwort Plagiochila fruticosa in 1996 by Asakawa and co-workers 
(Figure 1).1 The chlorinated analogue bazzanin J (2),2 diaryl ether 
riccardin C (3)3,4 have been isolated by Asakawa et al. It was found 
the existence of chirality in isoplagiochin C (1a) and isoplagiochin D 
(1b) by the analysis of CD spectra and optical rotation.2,5-7 The 16-
membered macrocycle bearing two linear biaryls displayed 
potential axial chirality of biaryl systems: bond a in isoplagiochin D 
displayed stable axial chirality while bond b bearing less hindered 
two ortho-hydroxy substituents was semistable. Becker, Speicher 
and Bringmann et al. discussed the atropisomerism and ring strain 
for these compounds, and determined the energy of racemization 
of isoplagiochin C to be 101.6 kJ/mol, approximately.7 Markedly, 
the optical rotation of natural isoplagiochins C and D varied from 
the plant source and the isolation protocol.1,3 These compounds 
also exhibit anti-MRSA,8,9 antitumoural, antibacterial and 
antimycotic activities.10,11 The interesting twisted structure, along 
with the remarkable biological activities attracted considerable 
attentions from synthetic and bio-chemists.12-16 
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Figure 1 Structure of Isoplagiochins and Analogues 
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Scheme 1 Approaches for Asymmetric Synthesis of Isoplagiochins 
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The asymmetric synthesis of atropo-active natural products 
have caught significant attentions.17-22 The catalytically asymmetric 
macrocyclization for atropisomers construction is challenging,23,24 
and diastereo-controlled approach was the general strategy.25,26 
The syntheses of the cyclophane-like bis(bipbenzyls) were almost 
in racemic form,27-29 until in 2012 Speicher and co-workers started 
the first trial for catalytically asymmetric synthesis of Isoplagiochins 
D (Scheme 1a). In this study, they controlled the axial chirality of 
Isoplagiochin D via a palladium-catalysed Heck macrocyclization.30 
It was proposed that the oxidative addition of Pd(0)(BINAP)2 with 4 
possibly afforded an atropostable arylpalladium species due to the 
large size of ortho Pd group. It might account for the low 
enantioselectivity (37% ee), where the Ar-Ar bond bearing ortho Pd 
group cannot undergo dynamical isomerization freely to adopt 
proper conformation during the macrocyclization; furthermore, to 
avoid possible “ligand-free” background reactions, complex 
[Pd(M)-BINAP]2 had to be prepared independently before use. Six 
years later, the same group developed an elegant chiral sulfinyl 
group induced diastereoselective Heck macrocyclization of iodide 
7 (Scheme 1b).31-34 Pleasingly, high yield (80%) and high 
diastereoselectivity (de 98%) have been achieved, although the 
modification of sulfinyl group to hydroxyl group required a very 
careful three-step manipulation with 34% overall yield at as low as 
-100 oC. 

Results and Discussion 
In continuation our research interests in transition-metal-

catalyzed atropisomer synthesis35-38 and with the inspiration of 
Speicher’s work,30-32 herein we report a catalytically asymmetric 
macrocyclization of benzyl chlorides and N-Ts hydrazones. Due to 
the high ring-strain, the atroposelective ring closure was obviously 
considered as the most challenging step. It was reasoned that the 
benzylic palladium species (12) (one-carbon extension in 
comparison with arylpalladium 5), was atropo-unstable at ambient 
temperature, which could adopt proper configuration to achieve 
high enantioselectivity during the macrocyclization (Scheme 2). 
Thus, the Pd-catalyzed styrenes synthesis between benzyl chloride 
and arylhydrazones became an ideal reaction for our strategy.39-51 
The key cyclic palladium complex 13 would give 14 via migration 

and insertion. The β-elimination of 14 afforded the key 
intermediate 15. The axial chirality determining-step may either be 
the carbene coordination Step A or ring contraction Step B. 
Alternatively, the benzylic chloride and aldehyde hydrazone 
moieties can be switched, such as compound 10 vs 11. 
Scheme 2 Synthetic Plan for Asymmetric Macrocyclization 
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We started our studies by the synthesis of cyclization precursor 

10 (Scheme 3). The reduction of ester 16 with DIBAL-H gave alcohol 
17, which was transferred to Wittig reagent 18 with Ph3PHBr. The 
palladium-catalyzed borylation of 19 gave 20, which would furnish 
the biaryl 22 via the cross-coupling with the bromide 21. The Wittig 
olefination of 22 with 18 provided a pair of Z/E isomers 26 in 85% 
overall yield. The subsequent palladium-catalyzed Suzuki coupling 
with 25 furnished 27 in excellent yield. Three-step manipulation, 
hydrogenation, hydrolysis and chlorination gave benzyl chloride 28. 
Unfortunately, the electron-donating property of the para-
methoxy group made this benzyl chloride 10 unstable, which was 
quickly decomposed in the next step. 

Subsequently, hydrazone 11, whose methoxy group is at the 
meta-position of benzyl chloride, was going to be prepared 
(Scheme 4). The aldehyde 19 was treated with ethylene glycol to 
give ketal 29, which successfully delivered 30 via palladium-
catalyzed cross-coupling with 20. The olefination of 30 with 18 
furnished 31 in 90% yield (Z/E ~ 1:1), which was further transferred 
to 35 via Suzuki-coupling with boronic ester 32. The same three-
step manipulation provided 34 in 81% overall yield. Compound 34 
was stable enough and readily condensed with hydrazines bearing 
different steric and electronic properties in good yields. 
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Scheme 3 Synthesis of Precursor 10 
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Scheme 4 Synthesis of Precursor 11 
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With the hydrazone 11a in hand, we tried to study the 
asymmetric macrocyclization (Table 1). Primary screening found 
that Pd(TFA)2 was the optimal pre-catalyst. The monodentate 
ligand MOP gave 6% yield with 7% ee, while bidentate ligands L2 
and L3 only produced trace amount of desired product (entries 1-
3). DIOP (L4) gave an increased yield of 15, while the 
enantioselectivity was still low (entry 4). The reactions by using 
axially chiral phosphine L5 or L6, or the Ding’s Ph-SKP (L7) as the 
ligand did not achieve better results (entries 5-7).52 The planar 
chiral biphosphine L8 dramatically improved the efficacy of this 
macrocyclization (43% yield), however, the enantioselectivity was 
still dissatisfied (entry 8). Pleasingly, the chirality at P-center ligand 
L9, developed by Tang and co-workers showed significantly 
improved enantioselectivity (entry 9).53 Thus, the corresponding 
analogous have been investigated. It was found that 9-anthracenyl 
group was critical for the stereoselectivity, and the bidentate ligand 

WingPhos (L12) displayed best performance, and the reaction 
afforded the cyclization product in excellent ee value (entries 10-
12).54,55 The reaction conducted at 70 oC gave 15 in 93% ee, while 
further decreasing the temperature to 60 oC resulted in the rate of 
this reaction becoming very sluggish (entries 13-14). It was found 
that the yield of this reaction was very sensitive to moisture. Finally, 
the combination of LiOtBu and LiOH (1:2) gave reliable yield while 
maintained high enantioselectivity (entry 15). Increasing the 
loading of Pd(TFA)2 only slightly improved the yield (entry 16). 
Furthermore, the reaction with a stoichiometric amount of 
palladium catalyst gave only a trace amount of product. In all these 
reactions, the hydrolysis of hydrazone to aldehyde, as well as the 
dimerization of carbene intermediate to C=C bond are the main 
byproducts. 

Table 1 Optimization of Reaction Conditionsa 

OOMMee

OOMMeeOOMMee

OOMMee

PPdd((TTFFAA))22
 
((2200

 mmooll%%))
,,
 
ll iiggaanndd

ttBBuuOOLLii,,
 
ttoolluueennee,,

 
tteemmpp

.

.

LL33LL22LL11

PP PP

PPhh

PPhhOO
OO

LL44

PP((XX yy ll))22

PP((XX yy ll))22

OO

OO

OO

OO
PP((TTooll))22

PP((TTooll))22

OO

OO

PPPPhh22

PPPPhh22

OO OO

PPPPhh22 PPhh22PP
LL77 LL88

LL99 LL1100 LL1111

PP

OO

ttBBuu
PP

OO

ttBBuuOO OO

PP

OO

ttBBuu ttBBuu

OO

PP

HH HH

LL1122

LL66LL55

PPPPhh22

OOMMee

PP

OO

ttBBuu

PPPPhh22

PPPPhh22

1111aa 1155
TT hhee

 
SSccrreeeenneedd

 
CChhiirraall

 
PPhhoosspphhiinneess

FFee
PPPPhh22

PPCCyy22

HHMMee

OOOO

OO

OOMMee

CCll

NN NNHHTTss

 

This article is protected by copyright. All rights reserved.



 

 
 www.cjc.wiley-vch.de © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Chin. J. Chem. 2019, 37, XXX－XXX 

Report First author et al. 

entry Ligand 
CONC. 
(mol/L) 

T/oC 
Yield of 15 

(%) 
ee of  

15 (%) 

1 L1 0.01 80 6 7 

2 L2 0.01 80 trace - 

3 L3 0.01 80 trace - 

4 L4 0.01 80 27 <2 

5 L5 0.01 80 7 <2 

6 L6 0.01 80 11 20 

7 L7 0.01 80 19 <2 

8 L8 0.01 80 43 5 

9[b] L9 0.02 80 18 61 

10[b] L10 0.02 80 5 10 

11[b] L11 0.02 80 9 10 

12[b] L12 0.02 80 13 85 

13[b] L12 0.02 70 11 92 

14[b] L12 0.02 60 - - 

15[c] L12 0.02 70 18 93 

16[c,d] L12 0.02 70 22 93 
a Reaction Conditions: 11a (0.04 mmol) tBuOLi (3.0 equiv), Pd(TFA)2 (20 
mol%), ligand (24 mol%) in toluene at indicated temperature. b 10 mol% of 
Pd(TFA)2 was used. c tBuOLi (1.5 equiv) and LiOH (3.0 equiv) was used. d 30 
mol% Pd(TFA)2 was used. After 15 being converted to 1b, the absolute 
configuration of the product was assigned as S by comparison of the optical 
rotation of the natural product. 

Additionally, the substituent effect of arylsulfonyl moiety was 
studied (Scheme 5). The 2,4,6-trimethylphenyl derivative 11b gave 
a slight decreased yield and enantioselectivity. The β-naphthyl 
analogue 11c spontaneously degraded to diazo compound partially, 
and mixture of 11c and diazo showed almost same efficacy as 11a. 
Unfortunately, strong electron-donating (11d) or electron-
withdrawing group (11e) at arylsulfonyl moiety was deleterious for 
this palladium-catalyzed cyclization. The benzyl bromide 11f only 
produced 6% of yield of the macrocycle possible due to its less 
stability than the benzyl chloride analogue 11a. 

Finally, an alkene derivative 36 was prepared from (Z)-33 in the 
same manner as above (Figure 6). We anticipated that the fixed 
geometry of Z-isomer would improve the cyclization yield. 
Disappointedly, the reaction of 36 did not produce any desired 
product under the standard conditions. 

Scheme 5 Other Effects for Macrocyclization 

TsNHNH2
MeOH, 50

 oC

35

OO

O

O

O

Cla)
 
2N

 
HCl,

 
50

 oC, 95%
b)

 
MsCl,

 
NEt3

, LiCl,
 
90%

OO

O

O

Cl

36

92%

N N
H

Ts

OMe

OMe
MeO

OMe

*

conditions

37, not
 
formed

(Z)
-33

OMe

OMeOMe

OMe

Pd(TFA)2
 
(0

.10
 equiv)

, L12
tBuOLi,

 
toluene 

(0
.02

 
M)

, 70
 oC

R
 = 

OMe, 11d, trace
R

 = 
CF3

, 11e, trace

9%, 89%
 ee 11%, 91%

 ee

4%, 63%
 ee

OO

O

OMe

X

N
NHSO2Ar

(11b) (11c)

(11f)

Substituent
 
Ef fect

Geometr ic
 
Ef fect

OO

O

OMe

X

N
N
H

S
O

O

Me

Me

Me

OO

O

OMe

X

N
N
H

S
O

O

OO

O

OMe

X

N
N
H

S
O

O

R

OO

O

OMe

Br

N
N
H

S
O

O

Me

OO

O

O

Cl

O

O

 

With 15 in hand, two-step manipulation smoothly furnished 
the synthesis of isoplagiochin D (1b) in 71% overall yield (Scheme 
6). Notably, partial racemization was observed during Pd/C-
catalyzed hydrogenation of 15 to 38. No racemization was observed 
by independent submitting compound 38 to standard 
hydrogenation conditions at room temperature. Thus, it is 
necessary to perform the hydrogenation reaction at -10 oC to 
minimize the racemization (93% ee to 91% ee). The rotational 
barrier [G(373.15K)ǂ] of compound 15 was determined to be 129 
kJ/mol by analysing the racemization rate at 90, 100, 110 oC, 
respectively. The calculated rotational barrier at 298.15 K was 119 
kJ/mol, approximately. These data indicated that compound 15 is 
more stable than isoplagiochin C. 
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Scheme 6 The Synthesis of Isoplagiochins D 
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Conclusions 
We reported a palladium-catalyzed highly enantioselective 

macrocyclization for the preparation of bisbibenzylis isoplagiochin 
D. It represented the first example for palladium-catalyzed 
enantioselective macrocyclization of benzyl halides and carbenes. 
In this Pd-catalyzed strain ring construction, WingPhos displayed 
unique stereo-induction activity. It showcased a new way for 
catalytically asymmetric construction of macrocycle, which might 
be applicable for other strained natural product synthesis. 
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