Dihydrogen activation by sulfido-bridged dinuclear Ru/Ge complexes: insight into the [NiFe] hydrogenase unready state[†]

Tsuyoshi Matsumoto,* Naohisa Itakura, Yukiko Nakaya and Kazuyuki Tatsumi*

Received 21st August 2010, Accepted 22nd October 2010 DOI: 10.1039/c0cc03391j

A S/SH bridged hetero-dinuclear Ru/Ge complex cation reacted with H₂ to afford the μ -S/ μ -H complex. The reaction was considerably slower compared to that of the μ -S/ μ -OH complex. Thus, the μ -S/ μ -SH and μ -S/ μ -OH complexes might provide models for the unready and ready states, respectively, of [NiFe] hydrogenase.

[NiFe] hydrogenase, which catalyzes a reversible conversion of dihydrogen into protons and electrons, has been recognized as the key enzyme in hydrogen metabolism in nature.¹ In the inactive form, the active site contains a hetero-dinuclear Ni/Fe complex bridged by two cysteine thiolates and an O-donor ligand. The O-donor ligand disappears upon activation by H₂, and the nickel approaches the iron, either to form a direct Ni–Fe bond or a µ-hydride bridged metal pair. Recently, Ogo and co-workers have reported the conversion of a dinuclear Ni/Ru aqua complex to the Ni(µ-H)Ru complex upon treatment with H₂, modeling the activation of [NiFe] hydrogenase.² In the course of our [NiFe] hydrogenase model studies,³⁻⁵ we synthesized hetero-dinuclear Ru/Ge complexes having S/O bridges, $Dmp(Dep)Ge(\mu-S)(\mu-O)Ru(PR_3)$ (1a; R = Ph, 1b; R = Et), and S/OH bridges, $[Dmp(Dep)Ge(\mu-S)(\mu-OH)Ru(PR_3)](BAr^F_4)$ (2a; R = Ph, 2b; R = Et,⁴ and investigated the reaction of **1a** and **2a** with H₂ (Dmp = 2.6-dimesitylphenyl, Dep = 2.6-diethylphenyl, $Ar^{F} = 3.5 - (CF_3)_2 C_6 H_3$.⁵ Although this metal pair is not identical with that of the hydrogenase, we have obtained several important results that may provide insight into the reaction mechanism of [NiFe] hydrogenase; (i) both 1a and 2a activated H₂ heterolytically, but the reaction of 2a proceeded more readily under milder conditions, (ii) the reaction of 2a with H₂ afforded the μ -S/ μ -H complex, which could model the [NiFe] hydrogenase activation process, (iii) the reaction of H₂ and 2a was reversible, and that (iv) 2a cannot merely activate H₂ heterolytically, but further convert H₂ into two protons and electrons. In order to expand the scope of this study, we have examined the reactions of H₂ and Ru/Ge complexes having S/S bridges (3a,b) and S/SH bridges (4a,b) (Chart 1). This study may imply that the unready Ni-B' and Ni-'S' states of [NiFe] hydrogenase⁶ are oxidized forms having an S-donor

Research Center for Materials Science, Nagoya University,

ligand as a third bridge, states, as has been proposed as a possible structure for the inactive state.^{1b,7}

The μ -S/ μ -S complexes Dmp(Dep)Ge(μ -S)₂Ru(PR₃) (**3a**; R = Ph, **3b**; R = Et) were synthesized from Dmp(Dep)Ge(SH)₂, [RuCl₂(η^{6} -*p*-arene)], and the corresponding phosphines according to Scheme 1.⁴ Protonation of **3a** and **3b** upon treatment with H(OEt₂)₂BAr^F₄ gave the μ -S/ μ -SH complex cations [Dmp(Dep)Ge(μ -S)(μ -SH)Ru(PR₃)](BAr^F₄) (**4a**; R = Ph, **4b**; R = Et), respectively.⁴

As reported previously, the reaction of **3a** and H₂ resulted in the recovery of the starting materials even under 10 atm H₂ at 90 °C in benzene.^{5a} Unexpectedly, complex cation **4a** was also intact under 1–5 atm H₂ at 80–90 °C, while the μ -S/ μ -OH analogue **2a** smoothly reacted with 1 atm H₂ at rt within 7 h. On the other hand, the PEt₃ analogue **4b** was found to react with 1 atm H₂ gradually in refluxing benzene, and was converted to the μ -S/ μ -H complex **5b** in 83% yield in 3 days with concomitant formation of H₂S (Scheme 2).⁸ The enhanced reactivity of the PEt₃ adduct was also observed for the μ -S/ μ -OH complexes, so that the reaction of **2b** and 1 atm H₂ was completed within 5 min.⁹ The reaction of **4b** is considerably

Department of Chemistry, Graduate School of Science,

Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

E-mail: i45100a@nucc.cc.nagoya-u.ac.jp; Fax: +81 52-789-2943; Tel: +81 52-789-2474

[†] Electronic supplementary information (ESI) available: Experimental details and spectroscopic data. CCDC 789927 (**5b**) and 789928 (**6b**). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0cc03391j

slower compared to that of **2b**. Thus sluggishness indicates the reverse reaction for **4b** is faster than for **2b**. Indeed, addition of 1.1 equiv. H_2S to **5b** gave **4b** quantitatively within 5 min at rt with concomitant formation of H_2 . Complex **5a**, synthesized by the reaction of **2a** and H_2 , was also converted to **4a** immediately upon a similar treatment with H_2S . Thus, in order to promote the forward H_2 activation reaction, the removal of H_2S is indispensable, and thus solvent-reflux conditions are required.

Interestingly, the μ -S/ μ -SH and μ -S/ μ -OH complexes were interconverted in the presence of H₂O or H₂S. When complex **4a** was treated with 20 equiv. H₂O in THF-d₁₀ at 293 K, complexes **4a** and **2a** were observed in a 98 : 2 ratio according to the ¹H NMR spectra, and thus the equilibrium constant K_{eq} for Scheme 3 can be estimated to be ~10⁻⁴. It is of note that interconversion was not observed between the μ -S/ μ -S complexes **3a,b** and the μ -S/ μ -O complexes **1a,b**, where protonation of μ -S or μ -O would be essential for these conversions.

Our detection of the $4a \leftrightarrow 2a$ equilibrium prompted us to re-examine the reaction of 4a and H_2 in the presence of H_2O . When a THF solution of 4a was refluxed under 1 atm H_2 with 10 equiv. H_2O for 1 day, the reaction proceeded as expected, and complex 5a was obtained in 68% yield. In this reaction, complex 2a was generated from 4a and H_2O *in situ*, which then reacted with H_2 .

It can be demonstrated that the μ -hydride of **5b** shows protonic behavior as observed for **5a**. Thus treatment of **5b** with tetraethylammonium hydroxide resulted in quantitative formation of Dmp(Dep)Ge(μ -S)Ru(PEt₃) (**6b**) (Scheme 4). Conversely, the protonation of **6b** by H(OEt₂)₂BAr^F₄ in toluene gave **5b**, quantitatively.

The molecular structures of **5b** and **6b**, determined by X-ray analysis, are shown in Fig. 1 and 2, respectively.‡ The structural properties and the metric parameters of **5b** and **6b** are quite similar to those of the previously reported PPh₃ analogues of **5a** and **6a**, respectively, irrespective of the different phosphines.^{5b} While their Ru–S and Ge–S bond distances are typical,^{4,10} the Ru(1)–H(1) distance of **5b** is elongated compared to terminal Ru–H bonds,^{5a} and is similar to those of μ -hydride complexes.¹¹ The Ge(1)–H(1) distance is even longer than the Ru(1)–H(1) bond, but is shorter than that of (depe)₂(CO)Mo(η^2 -H–GePh₂H) [2.08(6) Å],¹² indicating a weak bonding interaction between Ge and the hydride on Ru. The Ru(1)–Ge(1) distance of 2.5659(9) Å is also longer than those of the Ru–Ge σ -bonds of (C₆H₆)Ru(CO)(GeCl₃)₂ [2.408(2) Å] and *cis*-Ru(CO)₄(GeCl₃)₂ [2.481(5) Å].¹³ Upon deprotonation, the Ru–Ge distance of **6b** is

Fig. 1 ORTEP drawings of **5b**. Selected bond distances (Å) and angles (deg): Ru(1)-S(1) 2.4565(15), Ru(1)-P(1) 2.3176(12), Ge(1)-S(1) 2.1486(12), Ru(1)-Ge(1) 2.5659(9), Ru(1)-H(1) 1.67(5), Ge(1)-H(1) 1.97(6), Ru(1)-S(1)-Ge(1) 67.34(4), Ge(1)-H(1)-Ru(1) 90(2).

Fig. 2 ORTEP drawings of **6b**. Selected bond distances (Å) and angles (deg): Ru(1)-S(1) 2.4757(14), Ru(1)-P(1) 2.2952(15), Ge(1)-S(1) 2.1871(14), Ru(1)-Ge(1) 2.4157(6), Ru(1)-S(1)-Ge(1) 62.04(3), Ge(1)-Ru(1)-S(1) 53.10(3), Ru(1)-Ge(1)-S(1) 64.85(3).

shortened by 0.15 Å compared to **5b** becoming a common Ru–Ge σ -bond distance, and accordingly the bond angle around S(1) becomes smaller by 5.3° from that of **5b**.

In this study, we report that the μ -S/ μ -SH complex was converted to the μ -S/ μ -H complex upon treatment with H₂, as was observed for the μ -S/ μ -OH complex. This reaction was considerably slower compared to that of the μ -S/ μ -OH complex. However, in the presence of H₂O, the μ -S/ μ -SH complex equilibrates with the μ -S/ μ -OH complex, and then it appeared to react with H₂ more smoothly to form the μ -S/ μ -H complex, although it is still slower than the case of the μ -S/ μ -OH complex (Scheme 5). The different reactivity of the μ -S/ μ -OH and μ -S/ μ -SH complexes toward H₂ reminds us

of the ready states (Ni-B or Ni-SI_r) and the unready states (Ni-B', Ni-'S', Ni-A, or Ni-SU) of [NiFe] hydrogenase,⁶ in which the ready Ni-B state is easily activated within a few minutes under a hydrogen atmosphere, whereas the unready Ni-A state requires longer activation times of up to hours.¹ While the protein crystallographic analysis suggested that the Ni-A state contains μ -OOH as the third bridge, the Ni-B' or Ni-'S' states having a μ -SH⁶ may be important states showing a reactivity like the unready Ni-A state.^{1b,7} Considering that sulfate-reducing bacteria produce a large amount of H₂S in their metabolism, the active site may be converted by H₂S into the Ni-B' or Ni-'S' states having a μ -SH, similar to our results reported here, which show the μ -S/ μ -OH complexes **2a,b** and the μ -S/ μ -SH complexes **4a,b**.

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 18GS0207) from Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to Prof. Roger E. Cramer for discussions and careful reading of the manuscript.

Notes and references

‡ Crystal data for **5b**: $C_{72}H_{66}BF_{24}GePRuS$; triclinic; $P\overline{1}$ (No. 2); a =12.057(3), b = 16.670(4), c = 20.047(3) Å; $\alpha = 68.826(12)$, $\beta = 70.639(11)$, $\gamma = 79.729(13)^\circ$, V = 3536.9(14) Å³; Z = 2; F(000) = 1650; $\mu = 7.955$ cm⁻¹; $\rho_{calc} = 1.534$ g cm⁻³; 29.042 reflections $(2\theta < 54.9^{\circ})$; 15512 unique ($R_{int} = 0.029$); $R_1 = 0.055$ $(I > 2\sigma(I))$, w $R_2 = 0.1597$ (all data), GoF = 1.085. For **6b**: $C_{40}H_{53}$ GePRuS; monoclinic; $P2_1/c$ (No. 14); a = 16.292(2), b =9.2011(14), c = 24.751(4) Å; $\beta = 91.198(2)^{\circ}$, V = 3709.4(9) Å³; Z =4; F(000) = 1600; $\mu = 13.43 \text{ cm}^{-1}$; $\rho_{\text{calc}} = 1.380 \text{ g cm}^{-3}$; 29413 reflections ($2\theta < 55.0^{\circ}$), 8474 independent ($R_{int} = 0.077$); $R_1 = 0.057$ $(I > 2\sigma(I))$, w $R_2 = 0.158$ (all data), GoF = 0.954. Single crystals were mounted on a loop using oil (CryoLoop, Paratone-N, HR2-643, Hampton Laboratories, Inc.). Diffraction data were collected at -100 °C under a cold nitrogen stream on a Rigaku AFC8 equipped with a Saturn 70 CCD area detector, equipped with a graphite monochromatized MoK α source ($\lambda = 0.71070$ Å). Data were collected for 720 images with an oscillation range of 0.5°, and were integrated and corrected for absorption using the Rigaku/MSC CrystalClear program package. The structures were solved by a direct method (SIR-97), and were refined by full-matrix least squares on F^2 using SHELXL-97¹⁴ in the Rigaku/MSC CrystalStructure program package. Anisotropic refinement was applied to all non-hydrogen atoms. The hydrogen atom H(1) of 5b was assigned from the Fourier map and refined isotropically. The other hydrogen atoms were put at the calculated positions.

- Recent reviews: (a) W. Lubitzs, M. van Gastel and W. Gärtner, in Metal Ions in Life Sciences, ed. A. Sigel, H. Sigel, R. K. O. Sigel, John Wiley & Sons, Ltd, New York, 2006, vol. 2, pp. 279–322; (b) H. Ogata, W. Lubitz and Y. Higuchi, Dalton Trans., 2009, 7577; (c) P. M. Vignais and B. Billoud, Chem. Rev., 2007, 107, 4206; (d) J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza and Y. Nicolet, Chem. Rev., 2007, 107, 4273; (e) A. L. De Lacey, V. Fernández, M. Rousset and R. Cammack, Chem. Rev., 2007, 107, 4304; (f) W. Lubitz, E. Reijerse and M. van Gastel, Chem. Rev., 2007, 107, 4331; (g) P. E. M. Siegbahn, J. W. Tye and M. B. Hall, Chem. Rev., 2007, 107, 4414; (h) D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003, 32, 268.
- 2 (a) S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S. C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada and R. Kuroki, *Science*, 2007, **316**, 585; (b) B. Kure, T. Matsumoto, K. Ichikawa, S. Fukuzumi, Y. Higuchi, T. Yagi and S. Ogo, *Dalton Trans.*, 2008, 4747; (c) T. Matsumoto, B. Kure and S. Ogo, *Chem. Lett.*, 2008, 970.
- 3 (a) Y. Ohki, K. Yasumura, M. Ando, S. Shimokata and K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3994; (b) Y. Ohki, M. Sakamoto and K. Tatsumi, J. Am. Chem. Soc., 2008, 130, 11610; (c) Y. Ohki, K. Yasumura, K. Kuge, S. Tanino, M. Ando, Z. Li and K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 7652; (d) S. Tanino, Z. Li, Y. Ohki and K. Tatsumi, Inorg. Chem., 2009, 48, 2358; (e) Z. Li, Y. Ohki and K. Tatsumi, J. Am. Chem. Soc., 2005, 127, 8950.
- 4 T. Matsumoto, Y. Nakaya and K. Tatsumi, *Organometallics*, 2006, **25**, 4835.
- 5 (a) T. Matsumoto, Y. Nakaya and K. Tatsumi, Angew. Chem., Int. Ed., 2008, 47, 1913; (b) T. Matsumoto, Y. Nakaya, N. Itakura and K. Tatsumi, J. Am. Chem. Soc., 2008, 130, 2458.
- 6 See ref. 1d for the notation of each state of [NiFe] hydrogenase.
- 7 (a) Y. Higuchi and T. Yagi, *Biochem. Biophys. Res. Commun.*, 1999, 255, 295; (b) H. Ogata, S. Hirota, A. Nakahara, H. Komori, N. Shibata, T. Kato, K. Kano and Y. Higuchi, *Structure (London)*, 2005, 13, 1635.
- 8 The reaction was monitored by ¹H NMR spectra, and the product ratio was analyzed accordingly.
- 9 T. Matsumoto, Y. Nakaya and K. Tatsumi, unpublished results.
- 10 K. M. Baines and W. G. Stibbs, Coord. Chem. Rev., 1995, 145, 157.
- 11 (a) M. V. Ovchinnikov, X. Wang, A. J. Schultz, I. A. Guzei and R. J. Angelici, *Organometallics*, 2002, **21**, 3292; (b) G. Süss-Fink, E. G. Fidalgo, A. Neels and H. Stoeckli-Evans, *J. Organomet. Chem.*, 2000, **602**, 188.
- 12 J. L. Vincent, S. Luo, B. L. Scott, R. Butcher, C. J. Unkefer, C. J. Burns, G. J. Kubas, A. Lledós, F. Maseras and J. Tomàs, *Organometallics*, 2003, **22**, 5307.
- 13 (a) L. Y. Y. Chan and W. A. G. Graham, *Inorg. Chem.*, 1975, 14, 1778; (b) R. Ball and M. J. Bennett, *Inorg. Chem.*, 1972, 11, 1806.
- 14 G. M. Sheldrick, SHELX97, University of Gottingen, Germany, 1997.