

pubs.acs.org/OrgLett

Letter

Ligand-Dependent Regiodivergent Enantioselective Allylic Alkylations of α -Trifluoromethylated Ketones

Yi Zhu,[#] Yifan Ni,[#] Chenxi Lu, Xiaochen Wang, Yi Wang,* Xiao-Song Xue,* and Yi Pan

ABSTRACT: The asymmetric introduction of the CF₃ unit is a powerful tool for modifying pharmacokinetic properties and slowing metabolic degradation in medicinal chemistry. A catalytic and enantioselective addition of α -CF₃ enolates allows for expeditious access to functionalized chiral building blocks with CF₃-containing stereogenicity. The computational studies reveal that the choice of ligand in a designed palladium-complex system regulates the regioselectivity and stereoselectivity of the asymmetric allylic alkyation of α -CF₃ ketones and Morita–Baylis–Hillman adducts.

he wide application of fluorinated compounds in agrochemicals, pharmaceuticals, and materials science has triggered every endeavor to develop efficient methods for selective incorporation of a trifluoromethyl group into organic molecules.¹ The reliable methodology to access CF₃containing stereogenicity is still underdeveloped in the context of matured asymmetric synthesis.² The electrophilic trifluoromethylation of ketones has shown low reactivity and enantioselectivity, even with the aid of a chiral auxiliary (Figure 1a).³ Meanwhile, the exploitation of α -CF₃ enolate as an active nucleophile for enantioselective C-C bond-forming reactions is a viable strategy for pursuing this end, allowing rapid access to densely functionalized chiral building blocks.⁴ Despite the significant advances in enolate-based chemistry over the past decades, α -CF₃ enolates have only been scarcely explored because of the M-F elimination of their metal enolates.⁶ Electrophilic alkylation of prefunctionalized α -CF₃ ketones provided remarkable outcomes by the use of chiral auxiliaries or directing groups (Figure 1b).⁷ In contrast, the direct asymmetric alkylation of naked α -CF₃ ketones represents unmet challenges in terms of reactivity and selectivity that has not been addressed.⁸

Despite the broad application of Morita–Baylis–Hillman (MBH) adducts as functionalized allylic synthons, good regioand enantiocontrol of metal-catalyzed C1-selective adducts has not yet been realized.^{9,10} The comprehensive studies on palladium-catalyzed AAA reactions by Trost and co-workers revealed that the regioselectivity can be modulated by both sterics and electronics of the ligand.¹⁰ The nucleophilic attack of α -CF₃ enolate from the *Re/Si* faces to either terminal of the π -allylmetal complexes would result in a number of stereo-

Figure 1. Overview of α -CF₃ enolate chemistry.

Received: January 28, 2021 Published: March 11, 2021

pubs.acs.org/OrgLett

isomers. To overcome the above issues, we have designed a regiodivergent enantioselective allylic allylation of auxiliary-free α -CF₃ ketones with MBH adducts. By only switching the chiral ligands of the palladium complexes, excellent regio- and stereocontrol can be achieved on both C1 and C3 adducts for the construction of CF₃-bearing quaternary centers (Figure 1c).

To determine the suitable conditions for C1-selective allylic alkylation of α -CF₃ ketone **1**, we first studied the reaction of dihydroindenone **1a** and MBH ester **2a** (1.2 equiv) in the presence of Pd₂dba₃ (5 mol %) with a survey of chiral ligand (12 mol %) in THF at room temperature (Table 1). Spiro-type

Table 1. Optimization of the C1-Selective Reaction Conditions a

^{*a*}Unless otherwise noted, all reactions were performed in solvent (1 mL) at room temperature for 12 h in the presence of 1a (0.05 mmol), 2a (0.06 mmol), [Pd] (0.005 mmol), ligand (0.006 mmol), and base (0.10 mmol). ^{*b*}Yield of isolated 3a and 4a. ^{*c*}The values of 3a/4a and diastereomeric ratios of 3a were determined by ¹⁹F NMR analysis of the crude products. ^{*d*}The ee values of 3a were determined by chiral HPLC analysis.

ligand (L1) afforded the products in a total of 85% yield in which the C1-adduct **3a** was only 7% with 50% ee (entry 1). When using BINAP (L2) and Phoxphos (L3–L5), low regioand enantioselectivities for **3a** were obtained (entries 2–5). The reverse of the absolute configuration was obtained with L6 (entry 6). When switching to monodentate binaphthol-derived phosphoramidite L7,¹¹ an increased ratio of the C1 adduct **3a** was observed (entry 7, 35:65). SIPHOS L8 resulted in good regioselectivity (85:15) and 97% ee (entry 8). This could due to the electron-withdrawing feature of L8. Hence, the reduced electron density on Pd center can lead to the higher contribution of the cationic allyl intermediate, which would lead to the preferred C3-attack.

Further optimization with L8 showed that using dichloromethane as the solvent did not improve the reaction yield (entry 9). With toluene, the yield increased to 92% (entry 10). By adding 2 equiv of Et_3N , both reaction yields and selectivities were simultaneously improved (entry 11). The best results were obtained with DIPEA (entry 12, 96%, 95:5 for 3a, > 20:1 dr, 99% ee). Thus, the optimized conditions were selected for further investigation of the C1-selective AAA reaction.

The reaction scope of C1-alkylation was explored using CF_3 ketones 1a and different MBH esters 2 (Scheme 1). Phenyls bearing both electron-withdrawing and electron-donating

https://dx.doi.org/10.1021/acs.orglett.1c00329 Org. Lett. 2021, 23, 2443-2448

Table 2. Optimization of the C1-Selective Reactions^a

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$								
entry	ligand	base	LG	T (°C)	yield ^b (%)	4/3	E/Z^{c}	ee^d (%)
1	L1	none	OBoc	25	85	93:7	8:1	10
2	L3	none	OBoc	25	75	88:12	10:1	44
3	L4	none	OBoc	25	84	91:9	8:1	0
4	L5	none	OBoc	25	93	96:4	13:1	60
5	L7	none	OBoc	25	87	65:35	1:6	-40
6	L5	none	OAc	25	52	95:5	8:1	80
7	L5	none	OAc	-10	40	92:8	15:1	85
8	L5	none	OAc	-30	27	95:5	13:1	95
9	L5	Na ₃ PO ₄	OAc	-30	50	95:5	18:1	93
10	L5	K ₂ CO ₃	OAc	-30	56	90:10	16:1	85
11	L5	NaOAc	OAc	-30	37	92:8	16:1	94
12	L5	КОН	OAc	-30	25	90:10	15:1	80

^{*a*}Unless otherwise noted, all reactions were performed in solvent (1 mL) at a certain temperature for 48 h, in the presence of 1 (0.05 mmol), 2 (0.06 mmol), $Pd_2(dba)_3$ (0.005 mmol), L5 (0.012 mmol), and base (0.15 mmol). ^{*b*}Yield of isolated 3 and 4. ^{*c*}The ratios of 4/3 and E/Z ratio of 4 were determined by ¹⁹F NMR analysis of the crude products. ^{*d*}The ee values of 4a were determined by chiral HPLC analysis.

groups could be readily added to 1a to furnish the CF₃-ketones in high yields with excellent diastereoselectivities and enantioselectivities (3b-3l). Furan-, thiophene-, and naphthyl-derived MBH esters were tolerated (3n and 3o). Various substituted indenones on benzene ring could also afford the corresponding the C1-adducts (3p-3x).

For the optimization of C3-selective adduct (Table 2), we slightly modified the reaction conditions for substrate 1a and MBH ester 2b (LG = OBoc). With L1 and L4, low ee's were obtained. For L3 and L7, moderate regioselectivity and diastereoselectivity were achieved. L5 gave high regioselectivity (96:4) and 60% ee (entry 6). Switching the temperature to -10 and -30 °C further improved the diastereoselectivity, affording the C3-selective adduct in 85% and 95% ee, respectively. However, the reaction yields decreased significantly (entries 8 and 9). By adding bases such as Na₃PO₄, K₂CO₃, and NaOAc, the reaction yields were improved and the enantioselectivities remained high. KOH was found to be detrimental both to the reaction efficiency and diastereoselectivity.

The reaction scope of asymmetric allylic alkylation is further extended to a range of MBH esters with L5 to generate C3-selective adducts (Scheme 2). MBH esters 2 with an -OAc leaving group and phenyls bearing both electron-withdrawing groups could readily furnish the CF₃-ketones in good yields with high dr and ee's (4a-4j). Naphthalene-derived MBH esters were also tolerated (4k). Using CF₃-substituted tetralones, the corresponding adducts were also formed with equally high diastereoselectivity (4l-4o).

To gain insight into the regioselectivity, DFT calculations were carried out with M06L/6-311++G(2d,p)-SDD-SMD-(THF)//B3LYP/6-31G(d)-LANL2DZ-SMD (THF). For the Pd/L5 system,¹² calculations suggest an outer-sphere S_N2-type attack is 3.6 kcal/mol lower than that for C1 attack, consistent with the experimental regioselectivity (Figure 2a). Interestingly, the calculated $\Delta\Delta G^{\ddagger}$ value of the nucleophilic addition TS parallels the calculated $\Delta\Delta G^{\ddagger}$ of their corresponding π allyl-Pd precursor (Figure 2b) with 2.4 kcal/mol energy difference. Thus, the relative stability of the π -allyl-Pd complexes preserved in the subsequent nucleophilic addition

Scheme 2. C3-Selective Asymmetric Allylic Alkylation

Letter

TSs and thus dictates the regioselectivity of the Pd/L5 system. A closer look at Pd–allyl complexes reveals longer C–Pd distances in C1-attack precursor, indicating a looser Pd–allyl binding. This is likely the result of the trans influence of phosphine on the PHOX ligand as well as the delocalization of positive charges on C1 by the conjugated phenyl group. As shown in Figure 2c, the back-donation interaction involving the d orbital of the Pd center and $n-\pi$ orbital of the allyl moiety favors C3-attack precursor (-5.90 vs -5.79 eV on HOMOs). For more details, see the Supporting Information.

Figure 2. (a) Transition states and their relative free energy of C1/C3 attack of the Pd/L5 system. (b) π -allyl-Pd precursors and their relative free energy. NBO charges on terminal carbons are marked in red. (c) HOMO of π -allyl-Pd precursors.

The plausible reaction pathways based on previous reports¹³ and computational studies are illustrated in Scheme 3. The AAA process was initiated by the coordination of Pd–L* complex to the MBH ester followed by oxidative addition to generate Pd– π allyl species. Subsequent nucleophilic addition of α -CF₃ enolate to the Pd– π allyl species at the C1- or C3-position afforded trifluoromethylated ketones depending on the ligand-regulated process. The final decomplexation releases the corresponding product 3/4 and regenerate palladium catalysts. The key selectivity deviation is originated from each catalytic pathway using bidentate or monodentate ligand. For the bidentate Phoxphos L5, complexion of A with MBH ester and oxidative addition generate Pd– π allyl species B because

B is stable enough and ligand exchange between the leaving group and substrate **1** in Pd/L**5** system is not likely to occur. Hence, nucleophilic addition of CF₃enolate to **B** from outersphere affords C3-selective intermediate **D**. For the monodentate SIPHOS ligand L**8**, only one phosphoramidite ligand can coordinate to the metal center of the allylpalladium complexes.¹⁴ Thus, a similar oxidative addition process occurs first. The following decarboxylation of the Boc group releases 'BuO, and the Pd--'BuO complex **F** is obtained.¹⁵ Here, an equilibrium of ligand exchange between the CF₃ enolate and 'BuO controls the regioselectivity of the product. Configuration **G** with less steric hindrance against the Ar group of MBH ester is more favorable than H, which explains the C1 selectivity for SIPHOS **L8**.

In summary, we have developed a highly tunable ligandregulated regiodivergent asymmetric allylic alkylation of fluorinated ketones with MBH adducts. The choices of ligand in the palladium catalytic systems turn out to be critical for both reactivity and selectivity for the construction of the CF₃containing quaternary stereocenters. This protocol could access to a variety of fluorine-bearing motifs with high efficiency and selectivity.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c00329.

Experimental procedures, compound characterization data, and NMR spectra (PDF)

Accession Codes

CCDC 1911158 and 2009810 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Yi Wang – Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China; Orcid.org/0000-0002-8700-7621; Email: yiwang@nju.edu.cn

Xiao-Song Xue – State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China; orcid.org/0000-0003-4541-8702; Email: xuexs@nankai.edu.cn

Authors

- Yi Zhu Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Yifan Ni Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- **Chenxi Lu** State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
- Xiaochen Wang Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Yi Pan Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c00329

Author Contributions

[#]Y.Z. and Y.N. contributed equally to this work.

Notes

The authors declare no competing financial interest.

The preprint manuscript was deposited with Research Square. DOI: 10.21203/rs.3.rs-110638/v1.

ACKNOWLEDGMENTS

This work was funded by the National Natural Science Foundation of China (Nos. 21772085, 21971107, 22071101), the Fundamental Research Funds for the Central Universities (Nos. 020514380220, 020514380131, 020514913412, 020514913214), Natural Science Foundation of Jiangsu Province (BK20200610) and Postdoctoral Science Foundation of China (2019M661720). We also thank Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials at Nanjing University for support. Professor Hon Wai Lam at University of Nottingham is gratefully acknowledged for helpful discussion.

REFERENCES

(1) (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001-2011). Chem. Rev. 2014, 114, 2432-2506. (b) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Asymmetric Construction of Stereogenic Carbon Centers Featuring a Trifluoromethyl Group from Prochiral Trifluoromethylated Substrates. Chem. Rev. 2011, 111, 455-529. (c) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881-1886. (d) Liu, Y.; Wu, H.; Guo, Y.; Xiao, J. C.; Chen, Q. Y.; Liu, C. Trifluoromethylfluorosulfonylation of Unactivated Alkenes Using Readily Available Ag-(O2CCF2SO2F) and N-Fluorobenzenesulfonimide. Angew. Chem., Int. Ed. 2017, 56, 15432-15435. (e) Huang, L.; Lin, J.-S.; Tan, B.; Liu, X.-Y. Alkene Trifluoromethylation-Initiated Remote α -Azidation of Carbonyl Compounds toward Trifluoromethyl y-Lactam and Spirobenzofuranone-Lactam. ACS Catal. 2015, 5, 2826-2831. (f) Kong, W.; Casimiro, M.; Fuentes, N.; Merino, E.; Nevado, C. Metal-Free Aryltrifluoromethylation of Activated Alkenes. Angew. Chem., Int. Ed. 2013, 52, 13086-13090. (g) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Trifluoromethylation Reactions for the Synthesis of β -Trifluoromethylamines. Angew. Chem., Int. Ed. 2013, 52, 7841-7844. (h) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. Copper-Catalyzed C(sp³)-C(sp³) Bond Formation Using a Hypervalent Iodine Reagent: An Efficient Allylic Trifluoromethylation. J. Am. Chem. Soc. 2011, 133, 16410-16413.

(2) Ma, J.-A.; Cahard, D. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. *Chem. Rev.* **2004**, *104*, 6119–6146.

(3) Iseki, K.; Nagai, T.; Kobayashi, Y. Diastereoselective trifluoromethylation of chiral imide enolates with iodotrifluoromethane mediated by Triethylborane. *Tetrahedron Lett.* **1993**, *34*, 2169–2170.

(4) (a) Yang, X. Y.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluor-omethylation, and Trifluoromethylthiolation Reactions. *Chem. Rev.* **2015**, *115*, 826–870. (b) Li, M.; Xue, X.-S.; Cheng, J.-P. Establishing Cation and Radical Donor Ability Scales of Electrophilic F, CF₃, and SCF₃ Transfer Reagents. *Acc. Chem. Res.* **2020**, *53*, 182–197.

(5) (a) Mikami, K., Lautens, M. New Frontiers in Asymmetric Catalysis; Wiley: New York, 2007. (b) Walsh, P. J., Kozlowski, M. C. Fundamentals of Asymmetric Catalysis; University Science Books: Sausalito, CA, 2009. (c) Corey, E. J., Kürti, L. Enantioselective Chemical Synthesis; Direct Book Publishing: Dallas, TX, 2010.

(6) Franck, X.; Seon-Meniel, B.; Figadère, B. Highly Diastereoselective Aldol Reaction with α -CF₃-Substituted Enolates. *Angew. Chem., Int. Ed.* **2006**, 45, 5174–5176.

(7) (a) Shimada, T.; Yoshioka, M.; Konno, T.; Ishihara, T. Highly Stereoselective $TiCl_4$ -Catalyzed Evans-Aldol and Et_3Al -Mediated Reformatsky Reactions. Efficient Accesses to Optically Active syn-

or anti- α -Trifluoromethyl- β -hydroxy Carboxylic Acid Derivatives. Org. Lett. **2006**, 8, 1129–1131. (b) Yin, L.; Brewitz, L.; Kumagai, N.; Shibasaki, M. Catalytic Generation of α -CF₃ Enolate: Direct Catalytic Asymmetric Mannich-Type Reaction of α -CF₃ Amide. J. Am. Chem. Soc. **2014**, 136, 17958–17961. (c) Sun, B.; Balaji, P. V.; Kumagai, N.; Shibasaki, M. α -Halo Amides as Competent Latent Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction. J. Am. Chem. Soc. **2017**, 139, 8295–8301. (d) Saito, A.; Kumagai, N.; Shibasaki, M. Cu/Pd Synergistic Dual Catalysis: Asymmetric α -Allylation of an α -CF₃ Amide. Angew. Chem., Int. Ed. **2017**, 56, 5551– 5555.

(8) (a) Itoh, Y.; Yamanaka, M.; Mikami, K. Direct Generation of Ti-Enolate of α -CF₃ Ketone: Theoretical Study and High-Yielding and Diastereoselective Aldol Reaction. *J. Am. Chem. Soc.* **2004**, *126*, 13174–13175. (b) Mikami, K.; Itoh, Y. Metal enolates of α -CF₃ ketones: theoretical guideline, direct generation, and synthetic use. *Chem. Rec.* **2006**, *6*, 1–11.

(9) For organocatalytic AAA with MBH adducts, see: (a) Liu, T. Y.; Xie, M.; Chen, Y. C. Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts. Chem. Soc. Rev. 2012, 41, 4101-4112. (b) Zhong, F. R.; Luo, J.; Chen, G.-Y.; Dou, X. W.; Lu, Y. X. Highly Enantioselective Regiodivergent Allylic Alkylations of MBH Carbonates with Phthalides. J. Am. Chem. Soc. 2012, 134, 10222-10227. (c) Trost, B. M.; Tsui, H. C.; Toste, F. D. Deracemization of Baylis-Hillman Adducts. J. Am. Chem. Soc. 2000, 122, 3534-3535. (d) Börner, C.; Goldsmith, P. J.; Woodward, S.; Gimeno, J.; Gladiali, S.; Ramazzotti, D. Asymmetric chemo- and regiospecific addition of organozinc reagents to Baylis-Hillman derived allylic electrophiles. Chem. Commun. 2000, 2433-2434. (e) Dabrowski, J. A.; Haeffner, F.; Hoveyda, A. H. Combining NHC-Cu and Brønsted Base Catalysis: Enantioselective Allylic Substitution/Conjugate Additions with Alkynylaluminum Reagents and Stereospecific Isomerization of the Products to Trisubstituted Allenes. Angew. Chem., Int. Ed. 2013, 52, 7694-7699. (f) Zhu, Y.; Mao, Y.; Mei, H.; Pan, Y.; Han, J.; Soloshonok, V. A.; Hayashi, T. Palladium-Catalyzed Asymmetric Allylic Alkylations of Colby Pro-Enolates with MBH Carbonates: Enantioselective Access to Quaternary C-F Oxindoles. Chem. - Eur. J. 2018, 24, 8994-8998.

(10) For transition-metal-catalyzed AAA with MBH adducts, see: (a) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. *Chem. Rev.* 2003, 103, 2921–2943. (b) Trost, B. M.; Machacek, M. R.; Aponick, A. Predicting the Stereochemistry of Diphenylphosphino Benzoic Acid (DPPBA)-Based Palladium-Catalyzed Asymmetric Allylic Alkylation Reactions: A Working Model. *Acc. Chem. Res.* 2006, 39, 747–760. (c) Trost, B. M.; Masters, J. T.; Burns, A. C. Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-Aryloxindoles with Allylidene Dipivalate: A Useful Enol Pivalate Product. *Angew. Chem., Int. Ed.* 2013, 52, 2260–2264. (d) Trost, B. M.; Thaisrivongs, D. A. Strategy for Employing Unstabilized Nucleophiles in Palladium-Catalyzed Asymmetric Allylic Alkylations. *J. Am. Chem. Soc.* 2008, 130, 14092–14093.

(11) (a) Teichert, J. F.; Feringa, B. L. Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. *Angew. Chem., Int. Ed.* **2010**, *49*, 2486–2528. (b) Tang, S.-B.; Zhang, X.; Tu, H.-F.; You, S.-L. Regioand Enantioselective Rhodium-Catalyzed Allylic Alkylation of Racemic Allylic Alcohols with 1,3-Diketones. J. Am. Chem. Soc. **2018**, *140*, 7737–7742.

(12) Keith, J. A.; Behenna, D. C.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Oxgaard, J.; Stoltz, B. M.; Goddard, W. A. The Inner-Sphere Process in the Enantioselective Tsuji Allylation Reaction with (S)-*t*-Bu-phosphinooxazoline Ligands. *J. Am. Chem. Soc.* **2007**, *129*, 11876–11877.

(13) (a) Lin, H.-C.; Xie, P.-P.; Dai, Z.-Y.; Zhang, S.-Q.; Wang, P.-S.; Chen, Y.-G.; Wang, T.-C.; Hong, X.; Gong, L.-Z. Nucleophile-Dependent Z/E- and Regioselectivity in the Palladium-Catalyzed Asymmetric Allylic C–H Alkylation of 1,4-Dienes. *J. Am. Chem. Soc.* **2019**, 141, 5824–5834. (b) Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. Enantioselective γ -Alkylation of α , β -Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement. J. Am. Chem. Soc. **2016**, 138, 5234–5237. (c) Butcher, T. W.; Yang, J. L.; Amberg, W. M.; Watkins, N. B.; Wilkinson, N. D.; Hartwig, J. F. Desymmetrization of difluoromethylene groups by C–F bond activation. Nature **2020**, 583, 548–533.

(14) (a) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. A Pd(0)-Catalyzed Direct Dehydrative Coupling of Terminal Alkynes with Allylic Alcohols To Access 1,4-Enynes. J. Am. Chem. Soc. **2013**, 135, 12536–12539. (b) Wang, X. B.; Wang, X. M.; Han, Z. B.; Wang, Z.; Ding, K. L. Palladium-Catalyzed Asymmetric Allylic Allylation of Racemic Morita–Baylis–Hillman Adducts. Angew. Chem., Int. Ed. **2016**, 55, 1116–1119. (c) Liu, J.; Han, Z. B.; Wang, X. M.; Meng, F. Y.; Wang, Z.; Ding, K. L. Palladium-Catalyzed Asymmetric Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters by Allylation of β -Ketocarbonyls with Morita–Baylis–Hillman Adducts. Angew. Chem., Int. Ed. **2017**, 56, 5050–5054.

(15) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism. *Nat. Commun.* **2016**, *7*, 11806.

2448