This article was downloaded by: [University of Waterloo] On: 11 September 2013, At: 04:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Conversion of 5-Aryl-3phenylthio-2(3H)-furanones into Some Nitrogenand Sulphur-Containing Heterocycles

Ahmed S. A. Youssef^a, Kamal A. Kandeel^a, Wael S. I. Abou-Elmagd^a & Ahmed I. Hashem^a ^a Chemistry Department, Ain Shams University, Abassia, Cairo, Egypt Published online: 01 Feb 2007.

To cite this article: Ahmed S. A. Youssef, Kamal A. Kandeel, Wael S. I. Abou-Elmagd & Ahmed I. Hashem (2007) Conversion of 5-Aryl-3-phenylthio-2(3H)-furanones into Some Nitrogen- and Sulphur-Containing Heterocycles, Phosphorus, Sulfur, and Silicon and the Related Elements, 182:1, 85-97, DOI: <u>10.1080/10426500600867349</u>

To link to this article: http://dx.doi.org/10.1080/10426500600867349

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any

losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Conversion of 5-Aryl-3-phenylthio-2(3*H*)-furanones into Some Nitrogen- and Sulphur-Containing Heterocycles

Ahmed S. A. Youssef Kamal A. Kandeel Wael S. I. Abou-Elmagd Ahmed I. Hashem

Chemistry Department, Ain Shams University, Abassia, Cairo, Egypt

3-Phenylthio-5-aryl-2(3H)-furanones **4** were prepared from 2-phenylthio-**3**aroylpropionic acids **3** by a ring closure using acetic anhydride. Benzylamine reacted with **4** to give the benzylamide derivatives **5**, which were cyclized to the corresponding 2(3H)-pyrrolones **6**. The isothiazolone derivatives **7** were obtained from the benzylamides **5** by the action of SOCl₂. A ring opening of furanone **4** with hydrazine hydrate gave the acid hydrazides **8**. The latter hydrazides were utilized as starting materials for the synthesis of pyridazinone derivatives **9** and **11**, 1,3,4-oxadiazoles **13**, and triazolone derivatives **14**.

Keywords 2(3H)-furanones; 1,3,4-oxadiazales; 2(3H)-pyrrolones; pyridazinones; 1,2,4-triazolones

INTRODUCTION

2(3H)-furanones represent an important type of five-membered heterocycles of synthetic and biological importance. The products of a ring opening of these compounds with nucleophiles are the precursors of a wide variety of biologically important heterocyclic systems viz. pyrrolones,^{1,2} pyridazinones,^{3,4} pyrazoles,⁵ 1,3,4-oxadiazoles,^{6,7} and triazoles.⁸

During an attempted ring opening of 3-aryl-5-phenyl-2(3H)furanones 1 with nitrogen nucleophiles, some of our research group observed that instead of a ring opening, isomerization of furanones 1 into isomeric 2(5H)-furanones 2 occurred (Scheme 1).⁹

It was believed that such isomerization took place via the intermediacy of a carbanion intermediate initially formed at position 3, which by resonance stabilization affected the migration of the double bond.

Received March 7, 2006; accepted May 18, 2006.

Address correspondence to Wael S. I. Abou-Elmagd, Ain Shams University, Chemistry Department, Faculty of Science, Abassia, Cairo, Egypt. E-mail: waelmagd97@yahoo.com

SCHEME 1

In this investigation, it was thought that the presence of the phenylthio group at position 3 might exert a field effect, retarding the approach of the nucleophile (base). This would make an abstraction of a proton from position-3 difficult, and therefore, the ring opening should be the preferred route.

RESULTS AND DISCUSSION

The starring materials for this study, 3-phenylthio-5-aryl-2(3H)furanones **4**, were prepared from 2-phenylthio-3-aroylpropionic acids **3** (obtained from an addition of thiophenol to 3-aroylacrylic acids)¹⁰ by a ring closure using the procedure previously described by one of us (Scheme 2).¹¹

SCHEME 2

The structure of furanones was inferred from analytical as well as spectral data (cf. Table I). IR spectra of these products showed an absorption band at 1773 cm^{-1} characteristic of the five-membered lactone carbonyl group. ¹H NMR spectra of **4** showed characteristic signals of the methine, olefinic, and aromatic protons.

Benzylamine reacted with furanones 4; the product obtained was found to depend mainly on the reaction conditions. Thus, when the reaction was carried out in ethanol at r.t. or in refluxing benzene for 1 h, the open-chain benzylamides 5 were obtained.

On the other hand, refluxing the reaction mixture in benzene for 3 h afforded the corresponding 2(3H)-pyrrolones **6**. The latter products were also obtained by a ring closure of the amides **5** using an HCl/AcOH mixture as a cyclizing agent.

It was of interest to the authors to convert amides **5** into the corresponding isothiazolone derivatives **7** by the action of thionyl chloride at

No.	IR (ν max) (KBr) cm ⁻¹ ν C=0	¹ H NMR (DMSO-d ₆)
	0=0	
4a	1773	$\delta = 3.73$ (d, 1, CH, $J = 1.36$ Hz), 6.72 (d, 1, =CH, $J = 1.56$ Hz), 7.20–7.53 (m, 10, ArH)
4b	1772	$\delta = 3.35$ (d, 1, CH, $J = 1.30$ Hz), 6.80 (d, 1, =CH, $J = 1.56$ Hz), 7.35–7.50 (m, 9, ArH)
4c	1773	$\begin{split} \delta = &3.30 \; (\text{d},1,\text{CH},J = 1.30 \;\text{Hz}),3.70 \;(\text{s},3,\text{OCH}_3),6.82 \;(\text{d},1,=\text{CH},\\ J = &1.42 \;\text{Hz}),7.32{-}7.60 \;(\text{ m},9,\text{ArH}) \end{split}$

TABLE I Infrared (IR) and ¹H NMR (300 MHz) Spectral Data ofFuranones 4

r.t. Debenzoylation of the latter products **7a–c** was affected by refluxing with solid NaOH to give the isothiazolone derivative **7d**.

Structures of the products **5**,**6**, and **7** were elucidated from analytical and spectral data (cf. Table II). The foregoing reactions are represented by Scheme 3.

7 a, R = C_6H_5CO -; b, R = 4-Cl C_6H_4CO -; C, R = 4-CH₃OC₆H₄CO-; d, R = H

SCHEME 3 Reagents and conditions: (i) benzylamine in ethanol at r.t. or benzene/reflux for 1 h, (ii) benzylamine in benzene/reflux for 3 h, (iii) HCl/AcOH reflux 1 h, (iv) thionyl chloride at r.t.

Acid hydrazides represent a suitable functionality for obtaining a wide variety of biologically important heterocyclic systems. Dihydropyridazinones are known to have diverse pharmacological activities, e.g.,

	$\frac{IR (\nu max)}{KBr (cm^{-1})}$		
No.	$\nu_{\rm NH}$	$\nu_{C=0}$	1 H NMR (DMSO-d ₆)
5a	3300	1702 1665	$\delta{=}3.16({\rm d},2,{\rm CH}_2{\rm CO},J{=}7.2~{\rm Hz}),4.10({\rm AB_q},2,{\rm N}{\rm -CH}_2),4.56({\rm t},1,{\rm CH},J{=}7.2~{\rm Hz}),7.15{-}7.50~({\rm m},15,{\rm ArH}),8.50({\rm br.s},{\rm NH},{\rm exchangeable})$
5b	3350	$\begin{array}{c} 1702 \\ 1665 \end{array}$	$\begin{split} &\delta{=}3.20(\mathrm{d},2,\mathrm{CH}_2\mathrm{CO},J{=}7.0~\mathrm{Hz}),4.15(\mathrm{AB_q},2,\mathrm{N}{-}\mathrm{CH_2}),4.56(\mathrm{t},\\ &1,\mathrm{CH},J{=}7.0~\mathrm{Hz}),7.10{-}7.63~(\mathrm{m},14,\mathrm{ArH}),8.35(\mathrm{br.s},\mathrm{NH},\\ &\mathrm{exchangeable}) \end{split}$
5c	3330	1705	
6a	—	$1675 \\ 1650$	$\delta = 3.80(AB_q, 2, N-CH_2), 4.82 (d, 1, CH, J = 6.0 Hz), 6.59(d, 1, =CH, J = 6.0 Hz), 7.51-8.12 (m, 15, ArH)$
6b	_	1635	
6c	_	1639	δ = 3.80(AB _q , 2, N-CH ₂), 3.95 (s, 3, OCH ₃), 4.84 (d, 1, CH, J = 6.0 Hz), 6.50 (d, 1, =CH, J = 6.0 Hz), 7.50–8.50 (m, 14, ArH)
7a	_	1688	$\delta = 3.95(s, 2, N-CH_2), 7.25-7.55 (m, 15, ArH)$
7b	_	1690	
7c	—	1687	δ = 3.95(s, 3, OCH_3), 4.05 (s, 2, N—CH_2), 7.20–7.55 (m, 14, ArH)
7d	—	1650	$\delta{=}3.95($ s, 2, N–CH_2), 6.62 (s, 1, =CH), 7.25–7.50, (m, 10, ArH)

TABLE II Infrared (IR) and ¹H NMR (300 MHz) Spectral Data of 5, 6, and 7

antihypertensive,¹² analgesic, and antiinflammatory activities.¹³ 1,3,4oxadiazoles were reported to have carcinostatic activity against several types of tumors¹⁴ and antiarrhythmic¹⁵ and anticholesterolsmic¹⁶ activities. Also 1,2,4-triazoles display some biological activities, such as an inhibition of cholinesterase,¹⁷ interference with mitosis,¹⁸ and reversible denaturation of serum proteins.¹⁹ Since this investigation aims at converting 2(3H)-furanone derivatives **4** into other heterocyclic systems of biological importance, we believe that the key step is the conversion of **4** into the corresponding acid hydrazides.

Thus, the furanone **4** reacted with hydrazine hydrate in ethanol at r.t. to give 3-aroyl-2-phenylthiopropionic acid hydrazides **8**. The infrared spectra of these hydrazides (cf. Table III) showed absorption bands characteristic of the NH and amide C=O groups at 3200–3220 cm⁻¹ and 1670–1690cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of **8a** showed signals characteristic of the different protons (cf. Table III).

\mathfrak{c}
Ξ
ຊ.
Ċ1
H.
حّ
H
5
Ř
5
Ň
_
_
ic'
1
Z
\sim
at
_
õ
<u> </u>
Ξ.
Ę
a
3
<u>د</u>
0
5
Æ.
5
5
5
- E
5
\mathbf{L}
$\mathbf{\Sigma}$
5,
_
5
Ť
a
2
Ľ.
≥
Ó
Ω

	IR (ν	max) KBr(c	m^{-1}	
No.	$HN^{\mathcal{H}}$	₽C₩N	$\nu_{C=0}$	¹ H NMR (DMSO–d ₆)
8a	3250		1690	$\delta = 3.26({\rm d},2,{\rm CH_2CO},J = 6.0{\rm Hz}),4.85({\rm t},1,{\rm CH},J = 6.0{\rm Hz}),6.02({\rm br.s}2,{\rm NH_2},{\rm exchangeable}),$
	3200		1672	7.69–8.02 (m, 10, ArH), 8.50 (br.s, NHCO, exchangeable)
8 b	3215		1695	
	3190		1665	
8c	3220		1695	
	3175		1670	
9a	3250		1635	$\delta = 2.90(\mathrm{d},2,\mathrm{CH-CH}_2,J = 6.0\mathrm{Hz}),4.89~(\mathrm{t},1,\underline{\mathrm{CH}}.\mathrm{CH}_2,J = 6.0\mathrm{Hz}),7.49-7.90(\mathrm{m},10,\mathrm{ArH}),1.10,\mathrm{ArH}),1.10,\mathrm{ArH},1.10,\mathrm{ArH},1.10,\mathrm{ArH},1.10,\mathrm{ArH},1.10,\mathrm{ArH}),1.10,\mathrm{ArH}$
				10.49 (s, 1, NHCO, exchangeable)
$\mathbf{9b}$	3245		1642	
9c	3290		1630	
10a	3350		1705 1659	$\delta = 3.30$ (d, 2, CH ₂ CO, $J = 6.0$ Hz), 4.80(t, 2, CH ₂ - <u>CH</u> , $J = 6.0$ Hz), 7.35–7.89 (m, 15, ArH),
			CONT	10.45(s, Z, CU-NH-NH-CU, exchangeable)
10b	3390		$\begin{array}{c} 1699 \\ 1660 \end{array}$	$\delta = 3.45({\rm d},2,{\rm CH}_2{\rm CO},J = 6.0{\rm Hz}),4.89({\rm t},2,{\rm CH}_2-{\rm \overline{CH}},J = 6.0{\rm Hz}),7.20-7.65({\rm m},14,{\rm ArH}),10.05({\rm s},2,{\rm CO-NH-NH-CO},{\rm exchangeable})$
10c	3400		$1710\\1669$	
11a	3324		1630	$\delta = 4.70(d, 1, CH, J = 6.2 Hz), 6.60(d, 1, =CH, J = 6.2 Hz), 7.50-7.91(m, 15, ArH), 10.49(s, 1, NH-CO, exchangeable)$
11b	3320		1635	
				(Continued on next page)

TABLE III Infrared (IR) and 1H-NHR (300 MHz) Spectral data of 8-14

m
÷.
0
2
H
×.
-
8
Ę.
5
~~
•1
-
—
5
ŝ
4
Ó
÷
а
X
÷.
5
Ĕ
13
5
ų.
0
>
£.
S
5
5
÷Ξ
T
С.
_
5
<u> </u>
<u>र</u>
Ę.
ğ
ö
Ē
7
Š.
0
\sim

(pəi	
-14 (Contin	
l data of 8-	
Iz) Spectra	
HR (300 MF	
and 1H-NI	÷
rared (IR)	
BLE III Ind	
TA	

	IR (ν	max) KBr(c	m^{-1}	
No.	$HN\eta$	∿C ≕ N	$\nu_{\rm C=0}$	¹ H NMR (DMSO– d_6)
11c	3320		1630	$\delta = 3.75$ (s, 3, OCH ₃), 4.56(d, 1, CH, $J = 6.0$ Hz), 6.68 (d, 1, $=$ CH, $J = 6.0$ Hz), 7.50–7.70(m, 14, ArH). 10.49 (s. 1. NH–CO. exchangeable)
12a	3360		$\begin{array}{c} 1709 \\ 1670 \end{array}$	$\delta = 3.41(d, 2, CH_2CO, J = 6.3 Hz), 4.89(t, 2, CH_2-CH, J = 6.3 Hz), 7.50-7.60 (m, 10, ArH), 8.60(brs, 2, H_2N-CO, exchangeable), 10.45 (br.s, 2, CONHNHCO, exchangeable)$
12b	3356		$\begin{array}{c} 1710\\ 1675\end{array}$	$\delta=3.60({\rm d},2,{\rm CH}_2{\rm CO},J=6.5~{\rm Hz}),4.80({\rm t},2,{\rm CH}_2-\overline{{\rm CH}},J=6.5~{\rm Hz}),7.50-7.60~{\rm (m},9,{\rm ArH}),8.35({\rm br.s},2,{\rm H}_2{\rm N}-{\rm CO},{\rm exchangeable}),10.40~{\rm (br.s},2,{\rm CONHNHCO},{\rm exchangeable})$
12c	3362		1705 1675	
13a	I	1605	1675	$\delta = 3.06(d, 2, CH-CH_2, J = 4.8 Hz), 4.80 (t, 1, CH-CH_2, J = 4.8 Hz), 7.55-8.01 (m, 15, ArH)$
13b	I	1600	1685	$\delta = 3.30(d, 2, CH-CH_2, J = 5.3 Hz), 4.80 (t, 1, CH_2-CH_2, J = 5.3 Hz), 7.35-8.50 (m, 14, ArH)$
13c		1603	1670	
14a	3320	1600	1680	$\delta=3.21({\rm d},2,{\rm CH}_2,{\rm J}=6.0~{\rm Hz}),4.88({\rm t},1,{\rm CH}_2-{\rm CH},J=6.0~{\rm Hz}),7.22-7.39({\rm m},10,{\rm Ar}),13.04({\rm br:s},2,{\rm NHCONH},{\rm exchangeable})$
14b	3329	1600	1675	
14c	3300	1600	1677	$\delta=3.90({\rm s},3,{\rm OCH}_3),3.15({\rm d},2,{\rm CH}_2,J=6.2{\rm Hz}),4.68~({\rm t},1,{\rm CH}_2-{\rm \overline{CH}},J=6.2{\rm Hz}),7.05-7.30({\rm m},9,{\rm Ar}),12.09({\rm br.s},2,{\rm NHCONH},{\rm exchangeable})$
				•

Hydrazides **8** were utilized for the synthesis of the following heterocyclic compounds (cf. Scheme 4):

a, Ar = C_6H_5 -; b, Ar = 4-Cl C $_6H_4$ -; c, Ar = 4-CH $_3OC_6H_4$ -

SCHEME 4 Regents and conditions: (i) Hydrazine hydrate/ethanol r.t.; (ii) HCl/AcOH reflux 1 h; (iii) PhCOCl/benzene reflux 2 h; (iv) KNCO/H₂O r.t. 3 h; (v) Cl NH₃ NHCONH₂/AcONA (1.1 mol) ethanol, reflux 1 h; (vi) HCl/AcOH reflux 1 h; (vii) POCl₃/reflux 20 min; (viii) 2 N NaOH/reflux 2 h.

 Pyridazinone derivatives 9 were obtained by a ring closure of the hydrazides 8 using an HCl/AcOH mixture as a cyclizing agent. The infrared spectra of these compounds (cf. Table III) showed an absorption band characteristic of the NH and amide C=O groups at 3245–3290 cm⁻¹ and 1630–1642 cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of 9a showed signals characteristic of the different protons (cf. Table III).

- 1-aroylpyridazinones 11 were synthesized from hydrazides 8 by two steps: (i) hydrazides 8 were converted by the action of benzoyl chloride into the corresponding diaroylhydrazines 10⁻, and (ii) a ring closure of the latter products using HCl/AcOH afforded pyridazinones 11. The infrared spectra of compounds 10 (cf. Table III) showed absorption bands characteristic of the NH and C=O groups at 3350– 3400 cm⁻¹ and 1659–1710 cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of 10a and b showed signals characteristic of the different protons (cf. Table III).
- The infrared spectra of compounds 11 (cf. Table III) showed absorption bands characteristic of the NH and amide C=O groups at 3320–3324 cm⁻¹ and 1630–1635 cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of 11a and c showed signals characteristic of the different protons (cf. Table III).
- 4. 1,3,4-oxadiazoles **13** were obtained by a ring closure of diaroylhydrazines using phosphorus oxychloride. Infrared spectra of compounds **13** (cf. Table III) showed absorption bands characteristic of the C=N and C=O groups at 1600–1605 cm⁻¹, and 1670–1685 cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of **13a** and **b** showed signals characteristic of the different protons (cf. Table III).
- 5. 1,2,4-triazolone derivatives 14 were obtained from hydrazides by two steps: (i) hydrazides 8 were reacted with pot. isocyanate to give the corresponding semicarbazide derivatives 12. The infrared spectra of compounds 12 (cf. Table III) showed absorption bands characteristic of NH and C=O groups at 3356-3362 cm⁻¹ and 1675-1710 cm⁻¹, respectively. Furthermore, the ¹H NMR spectrum of 12a and **b** showed signals characteristic of the different protons (cf. Table III). The latter products were also obtained by a ring opening of furanones 4 by semicarbazide in refluxing ethanol. (ii) Semicarbazides 12 were cyclized by means of sodium hydroxide to give triazolones 14. The structures of compounds 14 were elucidated from their analytical as well as spectral data. Infrared spectra of compounds 14 (cf. Table III) showed absorption bands characteristic of NH and C=O groups at $3300-3329 \text{ cm}^{-1}$ and $1675-1680 \text{ cm}^{-1}$, respectively. Furthermore, the ¹H NMR spectrum of **14a** and **c** showed signals characteristic of the different protons (cf. Table III).

EXPERIMENTAL

Melting points were measured on an electrothermal melting-point apparatus and are uncorrected. Elemental analyses were carried out at the Micro-Analytical Unit, Cairo University, Giza. IR spectra were measured on a Unicam SP-1200 spectrophotometer using the KBr-wafer

The Preparation of 2-Phenylthio-3-aroylpropionic Acids (3a-c)

These compounds were prepared according to the procedure described by previous investigators. 10

The Preparation of 3-Phenylthio-5-aryl-2(3H) Furanones (4a-c)

A mixture of 2-phenylthio-3-aroylpropionic acids $(3a-c)^{10}$ (0.1 mol) and acetic anhydride (27 mL, 0.3 mol) was heated under reflux for 20 min. The reaction mixture was cooled, poured onto ice, and filtered off, and the product was recry stallized from a suitable solvent to give **(4a-c)** (cf. Table IV).

The Reaction of 3-Phenylthio-5-aryl-2(3H)-furanones (4a–c) with Benzylamine

To a solution of the furanones (4a-c) (0.01 mol) in benzene or ethanol (20 mL), benzylamine (1.1 mL, 0.01 mol) was added. The reaction mixture was refluxed in benzene at 60°C for 1 h or left at r.t. for 5 min in ethanol. The products obtained were shown to be 2-phenylthio-3-aroyl-N-benzyl-propionamides (**5a–c**), (cf. Table IV). When the reaction mixture was heated at 100°C for 3 h, the product obtained was filtered off, washed with benzene, and recrystallized from the suitable solvent (cf. Table IV). 1-benzyl-3-phenylthio-5-aryl-2(3H)-pyrrolones (**6a–c**) were obtained.

The Conversion of Amides (5a-c) into Isothiazolones (7a-c)

A mixture of N-benzylamide derivatives (**5a–c**) (0.001 mol) and thionyl chloride (20 mL, 0.17 mol) was stirred at r.t. for 24 h. The excess thionyl chloride then was evaporated under vacuum. The solid obtained was filtered off and recrystallized from a suitable solvent (cf. Table IV) to give 2-benzyl-4-phenylthio-5-aroyl-3 (2H)-isothiazolones (**7a–c**).

Debenzoylation of (7a-c)

A mixture of (7a-c) (0.01 mol) and solid NaOH (0.1 g, 0.0025 mol) in 20 mL of benzene was stirred at r.t. for 1 h. When a fading of the initial yellowish color was observed, the benzene layer was separated and concentrated under vacuum to give a solid residue, which was

(Calcd/Found) % M.P. °C No. (solvent) Yield % С Η Ν \mathbf{S} 4a 120 - 1224071.644.4811.94(ethanol) 71.604.4811.89 4b160 - 1635063.47 3.6410.5863.42 3.60 (ethanol) 10.56140 - 1412568.46 4.704c10.74_ (ethanol) 68.69 4.6510.69145 - 14765 73.60 5.603.73 8.53 5a (ethanol) 73.50 5.603.708.50 3.425b190 - 1916267.404.887.80(ethanol) 67.35 4.863.40 7.80165 - 1665571.115.683.467.90 5c(ethanol) 70.95 5.673.447.876a 130 - 1327577.315.323.928.96 (ethanol) 77.20 5.303.888.95 6b 160 - 1627070.504.603.588.17(ethanol) 70.454.623.648.1572140 - 14274.425.433.628.27 6c (ethanol) 74.395.463.608.24 7a 250 - 2524068.494.223.4715.884.23(ethanol) 68.67 3.5415.85230 - 2333.20 7b 3563.09 3.66 14.63(ethanol) 63.2163.693.3114.60257 - 25840 4.393.2314.787c 66.5166.60 4.383.2114.77(ethanol) 7d 195 - 1974564.214.354.6821.40(ethanol) 64.35 4.334.6821.37725.339.33 8a 150 - 15364.0010.67(benzene) 64.125.359.50 10.65**8**b 8.37 185 - 1867557.404.489.57(benzene) 57.574.488.40954 8c 165 - 16670 61.825.458.48 9.69 (benzene) 61.80 5.438.42 9.65 68.09 4.969.93 9a 145 - 1465511.354.979.97 (ethanol) 68.1511.339b 60.66 4.118.85 156 - 1594510.1160.78 4.108.89 (ethanol) 10.109c 183 - 1855065.385.138.97 10.26(ethanol) 65.505.138.95 10.2510a 250 - 2514068.324.956.93 7.92(benzene/ethanol) 68.354.936.90 7.9010b 4.336.39 7.29258 - 2594562.94(benzene/ethanol) 62.894.316.38 7.2710c 265 - 2663566.36 5.076.457.37(benzene/ethanol) 66.34 5.046.46 7.35

Table IV Physical and Analytical Data of Compounds 4-14

(Continued on next page)

	Continu
	No.
	11b
013	11c
ber 2(12a
ptem	12b
l1 Se	12c
4:55]	13a
at 0 ²	13b
erloo]	13c
Wate	14a
ity of	14b
iversi	14 c
y [Un	
ownloaded b	crystalliz 3(2H)-iso

Table IV Physical and Analytical Data of Compounds 4-14 (Continued)

M P °C			(Calcd/Fo	und) %	
(solvent)	Yield %	С	Н	Ν	S
190–192	30	71.50	4.66	7.25	8.29
(ethanol)		71.56	4.65	7.20	8.28
178 - 179	35	65.64	4.04	6.66	7.61
(ethanol)		65.69	3.97	6.61	7.64
192-193	45	69.23	4.81	6.73	7.69
(ethanol)		69.20	4.89	6.79	7.65
110 - 112	35	59.48	4.96	12.24	9.33
(benzene/ethanol)		59.47	4.94	12.20	9.30
125 - 126	50	54.01	4.24	11.13	8.48
(benzene/ethanol)		54.09	4.25	11.11	8.46
130-133	40	57.91	5.09	11.26	8.58
(benzene/ethanol)		57.96	5.07	11.26	8.55
180-181	50	71.50	4.66	7.25	8.29
(ethanol)		71.52	4.62	7.26	8.28
175 - 177	54	65.64	4.04	6.66	7.61
(ethanol)		65.66	4.06	6.64	7.60
185 - 186	50	69.23	4.81	6.73	7.69
(ethanol)		69.20	4.80	6.70	7.69
219-120	52	62.77	4.92	12.92	9.85
(ethanol)		62.73	4.90	12.95	9.84
213 - 114	65	56.75	4.17	11.68	8.90
(ethanol)		56.69	4.15	11.67	8.92
225 - 126	50	60.85	5.07	11.83	9.01
(ethanol)		60.82	5.07	11.80	9.00
	$\begin{array}{c} \text{M.P. °C} \\ (\text{solvent}) \\ \hline 190-192 \\ (ethanol) \\ 178-179 \\ (ethanol) \\ 192-193 \\ (ethanol) \\ 110-112 \\ (benzene/ethanol) \\ 125-126 \\ (benzene/ethanol) \\ 130-133 \\ (benzene/ethanol) \\ 130-133 \\ (benzene/ethanol) \\ 185-186 \\ (ethanol) \\ 175-177 \\ (ethanol) \\ 185-186 \\ (ethanol) \\ 219-120 \\ (ethanol) \\ 213-114 \\ (ethanol) \\ 225-126 \\ (ethanol) \\ 225-126 \\ (ethanol) \\ \end{array}$	$\begin{array}{c} {\rm M.P.\ ^{\circ}C} \\ ({\rm solvent}) & {\rm Yield\ \%} \end{array}$	$\begin{array}{c c} \mbox{M.P. °C} \\ (solvent) & Yield \% & \hline C \\ \hline 190-192 & 30 & 71.50 \\ (ethanol) & 71.56 \\ 178-179 & 35 & 65.64 \\ (ethanol) & 65.69 \\ 192-193 & 45 & 69.23 \\ (ethanol) & 69.20 \\ 110-112 & 35 & 59.48 \\ (benzene/ethanol) & 59.47 \\ 125-126 & 50 & 54.01 \\ (benzene/ethanol) & 54.09 \\ 130-133 & 40 & 57.91 \\ (benzene/ethanol) & 57.96 \\ 180-181 & 50 & 71.50 \\ (ethanol) & 71.52 \\ 175-177 & 54 & 65.64 \\ (ethanol) & 65.66 \\ 185-186 & 50 & 69.23 \\ (ethanol) & 69.20 \\ 219-120 & 52 & 62.77 \\ (ethanol) & 62.73 \\ 213-114 & 65 & 56.75 \\ (ethanol) & 56.69 \\ 225-126 & 50 & 60.85 \\ (ethanol) & 60.82 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

zed from ethanol (cf. Table IV) to give 2-benzyl-4-phenylthioothiazolone (7d).

The Reaction of 3-Phenylthio-5-aryl-2(3H)-furanones (4a–c) with Hydrazine Hydrate

To a solution of furanones (4a-c) (1 mol) in ethanol (20 mL), hydrazine hydrate (35.5 mL, 1.1 mol) was added at r.t. for 5 min. The product obtained was filtered off and washed with ethanol, and the product was shown to be 2-phenylthio-3-aroylpropionic acid hydrazides (8a-c) (cf. Table IV). When the reaction mixture was refluxed in ethanol, the product was shown to be 6-aryl-4-phenylthio-4,5-dihydropyridazin-3-(2H)-one derivatives (9a-c), which were recrystallized from a suitable solvent (cf. Table IV).

The Reaction of Hydrazides (8a-c) with Potassium Isocyanate

A solution of potassium isocyanate (1.78 g, 0.02 mol) in water (10 mL) was added dropwise with stirring at 0°C to a solution of hydrazide derivative **(8a–c)** (0.02 mol) in an acetic acid–water (1:1) mixture. The reaction mixture was stirred at r.t. for 3 h. The product obtained was filtered off, washed thoroughly with water, and finally recrystallized from a suitable solvent (cf. Table IV) to give 2-phenylthio-3-aroylpropionic acid semicarbazides **(12a–c)**.

The same semicarbazide derivatives (12a-c) were also obtained from heating a solution of 2(3H)-furanones (4a-c) (0.01 mol) in ethanol (30 mL) and a mixture of semicarbazide hydrochloride (1.12 g, 0.01 mol), and anhydrous sodium acetate (0.82 g, 0.01 mol) under reflux at 70°C for 1 h. The solid was obtained, filtered off, and recrystallized from a suitable solvent (cf. Table IV). The products obtained were identical in all respects (m.p., mixed m.p., and TLC) with the previously discussed products obtained from the reaction between hydrazides (8a-c) and potassium isocyanate.

The Reaction of Hydrazide (8a-c) with Benzoyl Chloride

To a solution of hydrazide (8a–c) (0.01 mol) in 50 mL of benzene, dry benzoyl chloride (1.5 mL, 0.01 mol) was added. The reaction mixture was heated under reflux for 2 h. The solvent was distilled off under reduced pressure. The yellow solid obtained was washed thoroughly with water, drained, and recrystallized from the suitable solvent (cf. Table IV) to give 1-benzoyl-2-[α -phenylthio- β -aroyl] propionyl hydrazines (10a–c).

Ring Closure of Compounds (5a-c) and (8a-c)

A solution of (5a-c) or (8a-c) (1 g) in a mixture of (HCl-CH₃COOH) (1:1) (30 mL) or ethanol (30 mL) was heated under reflux for 1 h and then left to cool. The solid obtained was filtered off, washed with water, and recrystallized from the suitable solvent (cf. Table IV) to give 1-benzyl-3-phenylthio-5-aryl-2(3H)-pyrrolone (**6a**-c) in the case of (**5a**-c) and 6-aryl-4-phenylthio-4,5-dihdropyridazin-3(2H)-ones (**9a**-c) in the case of (**8a**-c) (cf. Table IV).

Ring Closure of Diaroylhydrazine (10a-c)

Phosphorus oxychloride (10 mL, 0.065 mol) was added dropwise to 1g of the diaroylhydrazine (**10a–c**). The reaction mixture was refluxed for

20 min, left to cool, and poured onto crushed ice. The solid obtained was filtered off, washed with water, and recrystllized from a suitable solvent (cf.Table IV) to give 2-aryl-5-[α -phenylthio- β -benzoyl] ethyl-1,3,5-oxadiazoles (**13a–c**).

Ring Closure of the Semicarbazide Derivatives

A solution of 2 N NaOH (40 mL, 0.08 mol) was added to the semicarbazide derivatives (**12a–c**) (0.01 mol). The reaction mixture was refluxed for 2 h, filtered while hot, acidified with hydrochloric acid, and diluted with 60 mL of water. The solid formed was separated out, filtered off, washed with water, and recystallized from a suitable solvent (cf. Table IV) to give 3-(α -phenylthio- β -aroyl) ethyl-4,5-dihydro-1,2,4triazol-5-ones (**14a–c**).

REFERENCES

- [1] R. Filler and L. M. Hebron, J. Am. Chem. Soc., 81, 391 (1959).
- [2] A. I. Hashem, J. Prak.Chem, 321, 516 (1979).
- [3] A. I. Hashem and M. E. Shaban, J. Prak. Chem., 323, 164 (1981).
- [4] A. S. Hamad and A. I. Hashem, J. Heterocycl. Chem., 39, 13255 (2002).
- [5] S. M. El-Kousy, A. I. Hashem, A. El-Torgoman, and G. M. Salama, *Affindad LX*, 530, 1925 (2003).
- [6] S. Yassin , A. H. Abd El-Aleem, I. E .Elsayed, and A. I. Hashem, Collect. Czech. Chem.Commun., 58, 1925 (1993).
- [7] A. S. H. El-gazwy, M. Y. Zaki, N. N. Eid, and A. I. Hashem, *Heteroatom Chem.*, 14, 570 (2003).
- [8] S. Tassin, A. H. Abd El-Aleem, I. E. El-Sayed, and A. I. Hashem, *Rev. Roum. Chem.*, 41, 989 (1996).
- [9] H. A. Derbala, A. S. Hamad, W. A. El-Sayed, and A. I. Hashem, *Phosphorus, Sulfur, and Silicon*, 175, 153 (2001).
- [10] A. Sammour and M. El-Hashash, J. Prakt. Chem., 314, 906 (1972).
- [11] M. A. Ahmed, A. I. Hashem, and N. Iskander, Rev. Roum. Chem., 38, 79 (1993).
- [12] M. V. Curran, J. Med. Chem., 17, 273 (1974).
- [13] G. Nannini, G. Biasoli, E. Perrone, A. Forgine, A. Buttinoni, and M. Ferrari, *Eur. J. Med. Chem. Chim. Ther.*, 14, 53 (1979).
- [14] J. Cojocorius, Z. Cojocorius, and C. Niester, Rev. Chim., 28, 15 (1977).
- [15] D. Binder and H. Ferber, Eur. Pat., 19, 173 (1987), Chem. Abstr., 108, 585 (1988).
- [16] H. Ferres, A. W. Tyrrell, and G. R.- Geen, Drugs Exp. Clin. Res., 52, 964 (1982), Chem. Abstr., 97, 163012x (1982).
- [17] J. P. Polya, Nature (London), 176, 1175 (1955).
- [18] W. D., Jackson and J. P. Polya, Aust. J. Sci., 13, 149 (1951).
- [19] P. Dunn, E. A. Parkes, and J. P. Polya, Aust. J. Exp. Bvol. Med. Sci., 22, 2220 (1952).