

Palladium-Catalyzed Intramolecular Arylative Carboxylation of Allenes with CO₂ for the Construction of 3-Substituted Indole-2-carboxylic Acids

Yuki Higuchi, Tsuyoshi Mita,* and Yoshihiro Sato*®

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Supporting Information

ABSTRACT: Arylative carboxylation of allenes proceeded in an intramolecular manner to afford the corresponding β , γ unsaturated carboxylic acids in high yields using PdCl₂/PAr₃ (Ar = C₆H₄-*p*-CF₃) and ZnEt₂ under 1 atm of CO₂. The intermediate of the cyclization/carboxylation sequence is thought to be a nucleophilic η^1 -allylethylpalladium, which reacts with CO₂ at the γ -position of palladium. The products

obtained could be efficiently converted into 3-substituted indole-2-carboxylate derivatives. One-pot synthesis of strychnocarpine, a β -carboline alkaloid, from the carboxylated product was also demonstrated.

I ndole-2-carboxylic acids and their analogues (2-carboxyamides and amidines) are important structural motifs found in many natural products and biologically active compounds (Figure 1).¹⁻⁴ Among these, 3-substituted derivatives are especially important because the biological activities are mainly attributed to the chain structure of the 3-substituent¹ and because several naturally occurring substances have an additional six-membered heterocyclic ring attached at both of the 2,3positions (e.g., strychnocarpine,³ rutaecarpine,⁴ etc.). Thus, development of concise and robust synthetic protocols to access 3-substituted indole-2-carboxylic acids using a readily available starting material is highly desirable.

Utilization of gaseous CO_2 for the construction of carboxylic acid derivatives via C–C bond formation has recently received considerable attention because CO_2 is an abundant, relatively nontoxic, and inexpensive C1 source.⁵ These advanced technologies have expanded to carboxylation of indole nucleus with CO_2 . Although indole-3-carboxylic acid derivatives can be synthesized in the presence of a Lewis acid or a Brønsted base with/without a catalyst under a CO_2 atmosphere,⁶ fewer examples of the preparation of indole-2-carboxylic acids have been reported,⁷ probably because electrophilic aromatic substitution of the indole nucleus usually occurs at the 3position. Recently, the Iwasawa and Hou research groups

Figure 1. 3-Substituted indole-2-carboxylate skeletons.

Previous Works (Pd-Catalyzed Carboxylation of Allylic Alcohols and Vinylcyclopropanes)

of allenes using aryl halides and CO2

Figure 2. Our strategy for the construction of 3-substituted indole-2carboxylic acids.

independently reported transition-metal-catalyzed carboxylations of 2-indole boronic acid derivatives as one of the substrates,⁸ but the substrate scope did not cover any 3substituted 2-borylindoles. We disclose herein a new catalytic method for the synthesis of 3-substituted indole-2-carboxylic acids using nucleophilic allylpalladium species.

We recently reported palladium-catalyzed carboxylation of allylic alcohols⁹ and vinylcyclopropanes¹⁰ in the presence of ZnEt₂ under 1 atm of CO₂ (Figure 2, eq 1). η^1 -Allylethylpalladium **A** appears to be formed as an intermediate by reaction of the generated π -allylpalladium with ZnEt₂,^{11,12} and the nucleophilic species **A** reacts with CO₂ at the γ -position. We

è2

^aYields determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields are given in parentheses. ^bWith 6 mmol of **1a** in the presence of $PdCl_2$ (1 mol %) and $P(C_6H_4$ p-CF₃)₃ (2 mol %). Product was isolated as carboxylic acid **2a**^m. ^cNot determined.

Figure 3. Substrate scope. Isolated yields are shown. ^{*a*}Product **2k** was partially isomerized into methyl 3-methylbenzofuran-2-carboxylate (**2k**^{*m*}) (17% yield). These two products were separable by standard silica gel column chromatography. ^{*b*}ZnEt₂ was added using a syringe pump over 8 h, and the reaction mixture was stirred for an additional 8 h.

next focused on the use of *N*-allenyl-2-iodoanilines, which are known to undergo carbopalladation of the allene moiety intramolecularly, forming the corresponding π -allylpalladium species. This species has been reported to be trapped by a series of nucleophiles, including malonate and their derivatives, amines, acetate, and fluoride.¹³ However, when ZnEt₂ is present, the polarity of the allylpalladium would be changed to nucleophilic (eq 2). If species **B** has sufficient nucleophilicity toward CO₂ at the γ -position (2-position of the indole ring), 3-methyleneindo-line-2-carboxylates would be formed. We anticipated the capability of this dearomatization process because the resonance stabilization of the pyrrole part of the indole nucleus is relatively weak.^{14,15} In another important aspect, this transformation would be the first example of a transition-metal-catalyzed C–C

Figure 4. Carboxylation of 3-indolylmethyl acetate 4.

Figure 5. Plausible catalytic cycle.

bond-forming process between aryl halides and allenes followed by carboxylation with CO₂.¹⁶ Furthermore, the *exo*-olefin at the 3-position of the product appears to be reactive, and it can be further functionalized by several methods along with aromatization, furnishing the desired 3-substituted indole-2-carboxylic acid derivatives.

First, we investigated the intramolecular arylative carboxvlation of N-allenyl-2-iodoaniline 1a using various palladium sources and ligands in the presence of ZnEt₂ at room temperature under a CO_2 atmosphere (1 atm). Substrate 1a was readily prepared in three steps from 2-iodoaniline.¹⁷ Yields were determined after methyl esterification with TMSCHN₂ (Table 1). According to previously established conditions, PdCl₂ (10 mol %) with PPh₃ (20 mol %) was employed as a catalyst, and the expected carboxylated compound 2a was obtained in 44% yield with 3-methylindole 3a in 53% yield (entry 1). Regioselectivity was perfect, and regioisomer 2a' was not observed at all. Aromatized product 2a'' was not detected even under basic conditions using ZnEt₂. Next, several phosphine ligands were screened using PdCl₂ as a palladium source. Although the use of $P(C_6H_4-p-OMe)_3$ resulted in a similar outcome (entry 2), the use of electron-deficient phosphines such as $P(C_6H_4-p-CF_3)_3$ and $P(2-furyl)_3$ led to improvement of the product yield (entries 3 and 4). The trials for other Pd sources such as $Pd(OAc)_2$, $Pd(dba)_2$, and $Pd(acac)_2$ with $P(C_6H_4-p (CF_3)_3$ did not improve the yield of **2a** (entries 5–7). Among the potential polar solvents examined, use of DMA afforded product 2a in 89% yield (86% isolated yield; entries 8-10). Carboxylation could be performed at gram scale (6.0 mmol, 2.14 g) without esterification with TMSCHN₂, affording carboxylic acid 2a''' in high yield (84%, 1.39 g) using lower

Figure 6. Derivatization of 2a into 3-substituted indole-2-carboxylates and 3-oxindole-2-carboxylate.

loading of $PdCl_2$ (1 mol %) and $P(C_6H_4-p-CF_3)_3$ (2 mol %) (entry 11).¹⁷

With the optimized conditions in hand, substrate scope and limitations were investigated. As summarized in Figure 3, a variety of N-allenyl-2-iodoaniline derivatives bearing electronwithdrawing groups (F, Cl, Br, CF₃, and CN) and electrondonating groups (Me and OMe) on the aromatic ring (1b-j)could be converted into the corresponding 3-methyleneindoline-2-carboxylates **2b**-**j** in high yields. Notably, aryl bromide (**1d**), which potentially reacts with Pd(0) species,¹⁸ was tolerated during the palladium-catalyzed process. Note that the cyano group (1f), which is incompatible in the strong base-mediated carboxylation,⁷ remained intact. Moreover, the linker structure between the aromatic ring and the allene moiety was examined, showing that O-allenyl-2-iodophenol 1k had high reactivity, and carboxylated products 2k and 2k'' were obtained in 84% combined yield. The cyclization/carboxylation sequence could also provide access to 6-membered heterocyclic compounds, tetrahydroquinoline 2l and tetrahydroisoquinoline 2m, in good yields.

This arylative carboxylation of allenes is thought to proceed via the nucleophilic allylethylpalladium intermediate B, as depicted in eq 2 (Figure 2). To gain a mechanistic insight, we conducted carboxylation of 3-indolylmethyl acetate 4, which is highly possible to be converted into η^3 -allylpalladium intermediate C by oxidative addition to $Pd(0)L_n$ (Figure 4).¹⁹ Although an electron-deficient phosphine, $P(C_6H_4-p-CF_3)_3$, did not promote the reaction, probably due to the retardation of oxidative addition, PPh₃ moderately promoted the carboxylation at 60 $^{\circ}$ C, affording 2-carboxylated compound 2a in 25% yield with 3a in 20% yield (2a/3a = 56:44) without generation of regioisomeric carboxylate 2a'. When N-allenyl-2-iodoaniline 1a was subjected to the same reaction conditions, 2a and 3a were obtained in 57 and 40% yields (2a/3a = 59:41), respectively. The same profiles between two reactions (similar ratio of 2a and 3a and no formation of 2a') strongly indicate that both carboxylations went through the same allylpalladium species: η^1 -allylethylpalladium **D** was eventually produced via transmetalation of η^3 -allylpalladium C (X = OAc or I) with $ZnEt_2$. The palladium atom should be located at the terminal carbon (the benzylic position) due to

the avoidance of steric interaction between the ligands binding to the palladium atom and the indole nucleus. Intermediate **D** would then attack CO₂ at the γ -position to afford carboxylated product **2a**,^{9,10,12} while β -hydride elimination of an ethyl ligand of **D** followed by reductive elimination led to the formation of **3a**.

On the basis on the above experimental data, a plausible catalytic cycle is proposed in Figure 5. First, oxidative addition of **1a** to $Pd(0)L_n$ followed by insertion of the allene moiety results in formation of η^3 -allylpalladium **II**. Transmetalation between **II** and ZnEt₂ then proceeds to give the nucleophilic η^1 -allylethylpalladium **III**, which reacts with CO₂ at the 2-position of the indole skeleton through dearomatization. The resulting palladium carboxylate **IV** could be reduced by ZnEt₂ to regenerate $Pd(0)L_n$ with the release of zinc carboxylate **V**. It would then be protonated during workup and methylated with TMSCHN₂, affording desired compound **2a**. 3-Methylindole **3a** would be generated from intermediate **III**.

To demonstrate the synthetic utility of this carboxylation, we investigated the derivatization of 2a into 3-substituted indole-2carboxylates by taking advantage of the reactive exo-olefin at the 3-position of 2a (Figure 6).²⁰ First, DBU-promoted isomerization of 2a proceeded quantitatively to give 3-methylindole 2a". When epoxidation of 2a with DMDO was conducted, 3indolylmethanol 5 was obtained in excellent yield via an epoxide opening/aromatization sequence. By using the $Zn_4(OCOCF_3)_6O/DMAP$ system,²¹ 5 could be converted into furoindolone 6, which is a known intermediate for the synthesis of carbazole alkaloids (e.g., clausamine E and furanoclausamine B).²² Halogenation with NBS and NIS²³ resulted in the introduction of a bromo and an iodo group, respectively, at the benzylic position of 3-substituted indoles, affording 7 (X = Br) and 8 (X = I). In addition, a one-pot process involving the bromination and addition of nucleophiles such as H₂NBn and KCN²³ proceeded, and corresponding products 9 and 10 were obtained in good to high yields. Moreover, 2a was heated at 80 °C in the presence of N,N-dimethylmethyleneiminium chloride²⁴ to form N,N-dimethyltryptamine derivative 11 in 95% yield. C-C bond formation by Heck reactions of the *exo*-olefin in 2a using electron-neutral, -deficient, and -rich aryldiazonium salts²⁵ proceeded efficiently to afford the arylated products 12-

Organic Letters

We then turned our attention to the synthesis of strychnocarpine (16), a biologically active β -carboline alkaloid.³ After formation of dimethyltryptamine 11 from 2a, thermal Boc deprotection and lactam formation²⁶ were conducted at 200 °C in one pot, affording 16 in 87% yield (eq 3).

In conclusion, we successfully developed palladium-catalyzed intramolecular arylative carboxylation of allenes with CO₂. The generated η^1 -allylethylpalladium should be a key intermediate for dearomative carboxylation with CO₂. The resulting 3-methyl-eneindoline-2-carboxylates (**2a**-**j**) serve as useful precursors of 3-substituted indole-2-carboxylates.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b01055.

Experimental details and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: tmita@pharm.hokudai.ac.jp.

*E-mail: biyo@pharm.hokudai.ac.jp.

ORCID ®

Yoshihiro Sato: 0000-0003-2540-5525

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by Grant-in-Aid for Scientific Research (C) (No. 26410108), Grant-in-Aid for Scientific Research (B) (No. 26293001) from JSPS, and also by JST ACT-C (No. JPMJCR12YM). Y.H. thanks JSPS for a fellowship (No. 16J03988).

REFERENCES

(1) Baron, B. M.; Cregge, R. J.; Farr, R. A.; Friedrich, D.; Gross, R. S.; Harrison, B. L.; Janowick, D. A.; Matthews, D.; McCloskey, T. C.; Meikrantz, S.; Nyce, P. L.; Vaz, R.; Metz, W. A. *J. Med. Chem.* **2005**, 48, 995.

(2) Ajala, O. S.; Piggott, A. M.; Plisson, F.; Khalil, Z.; Huang, X.-C.; Adesegun, S. A.; Coker, H. A. B.; Capon, R. J. *Tetrahedron Lett.* **2011**, *52*, 7125.

(3) Herdeis, C.; Dimmerling, A. Heterocycles 1984, 22, 2277.

(4) Son, J.-K.; Chang, H. W.; Jahng, Y. *Molecules* **2015**, *20*, 10800 and the references therein.

(5) Recent reviews on CO₂ incorporation reactions: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. *Chem. Rev.* **2007**, *107*, 2365. (b) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. *Angew. Chem., Int. Ed.* **2011**, *50*, 8510. (c) Tsuji, Y.; Fujihara, T. *Chem. Commun.* **2012**, *48*, 9956. (d) Zhang, L.; Hou, Z. *Chem. Sci.* **2013**, *4*, 3395. (e) Kielland, N.; Whiteoak, C. J.; Kleij, A. W. *Adv. Synth. Catal.* **2013**, *355*, 2115. (f) Cai, X.; Xie, B. *Synthesis* **2013**, *45*, 3305. (g) Maeda, C.; Miyazaki, Y.; Ema, T. *Catal. Sci. Technol.* **2014**, *4*, 1482. (h) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. *ACS Catal.* **2016**, *6*, 6739.

(6) (a) Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo,
Y. Org. Lett. 2012, 14, 2622. (b) Yoo, W.-J.; Capdevila, M. G.; Du, X.;
Kobayashi, S. Org. Lett. 2012, 14, 5326. (c) Xin, Z.; Lescot, C.; Friis, S.
D.; Daasbjerg, K.; Skrydstrup, T. Angew. Chem., Int. Ed. 2015, 54, 6862.
(d) Nemoto, K.; Tanaka, S.; Konno, M.; Onozawa, S.; Chiba, M.;
Tanaka, Y.; Sasaki, Y.; Okubo, R.; Hattori, T. Tetrahedron 2016, 72, 734.
(e) Miao, B.; Li, S.; Li, G.; Ma, S. Org. Lett. 2016, 18, 2556.

(7) Deprotonation or halogen-lithium exchange: (a) Kondo, Y.;
Yoshida, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1996, 2331.
(b) Fukuda, T.; Mine, Y.; Iwao, M. Tetrahedron 2001, 57, 975. (c) Liu,
Y.; Gribble, G. W. Tetrahedron Lett. 2002, 43, 7135.

(8) (a) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2006**, 128, 8706. (b) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. **2008**, 47, 5792.

(9) Mita, T.; Higuchi, Y.; Sato, Y. Chem. - Eur. J. 2015, 21, 16391.

(10) Mita, T.; Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754.

(11) Reviews of nucleophilic η^1 -allylpalladium species: (a) Tamaru, Y. J. Organomet. Chem. **1999**, 576, 215. (b) Marshall, J. A. Chem. Rev. **2000**, 100, 3163. (c) Szabó, K. J. Synlett **2006**, 2006, 811. (d) Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org. Chem. **2007**, 2007, 3599.

(12) Carboxylation of η^1 -allylpalladium species with CO₂: (a) Shi, M.; Nicholas, K. M. J. Am. Chem. Soc. **1997**, 119, 5057. (b) Johansson, R.; Wendt, O. F. Dalton Trans. **2007**, 488. (c) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2008**, 130, 15254. (d) Hruszkewycz, D. P.; Wu, J.; Hazari, N.; Incarvito, C. D. J. Am. Chem. Soc. **2011**, 133, 3280. (e) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. **2011**, 13, 1698. (f) Wu, J.; Hazari, N. Chem. Commun. **2011**, 47, 1069. (g) Feng, X.; Sun, A.; Zhang, S.; Yu, X.; Bao, M. Org. Lett. **2013**, 15, 108.

(13) Selected examples of nucleophilic additions to the π allylpalladium generated by intramolecular insertion of the allene moiety into the palladium–carbon bond: (a) Ma, S.; Negishi, E. J. Am. Chem. Soc. **1995**, 117, 6345. (b) Fuwa, H.; Sasaki, M. Org. Biomol. Chem. **2007**, 5, 2214. (c) Braun, M.-G.; Katcher, M. H.; Doyle, A. G. Chem. Sci. **2013**, 4, 1216. (d) Nakano, S.; Inoue, N.; Hamada, Y.; Nemoto, T. Org. Lett. **2015**, 17, 2622. (e) Petkovic, M.; Nasufovic, V.; Djukanovic, D.; Vujosevic, Z. T.; Jadranin, M.; Matovic, R.; Savic, V. Eur. J. Org. Chem. **2016**, 2016, 1279. Intermolecular variants for the synthesis of heterocycles: (f) Zenner, J. M.; Larock, R. C. J. Org. Chem. **1999**, 64, 7312. (g) Chakravarty, M.; Kumara Swamy, K. C. J. Org. Chem. **2006**, 71, 9128.

(14) Selected reviews of dearomatization of indoles: (a) Roche, S. P.;
Porco, J. A., Jr Angew. Chem., Int. Ed. 2011, 50, 4068. (b) Zhuo, C.-X.;
Zhang, W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662. (c) Roche,
S. P.; Youte Tendoung, J.-J.; Tréguier, B. Tetrahedron 2015, 71, 3549.
(15) Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W. G.; Kilner,

C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron 2006, 62, 12159.

(16) Transition-metal-catalyzed carboxylation of allenes with CO₂:
(a) Dérien, S.; Clinet, J.-C.; Duñach, E.; Périchon, J. Synlett 1990, 1990, 361.
(b) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett 2005, 2005, 2019.
(c) Tani, Y.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2014, 136, 17706.
(d) Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Commun. 2015, 51, 13020.
(e) Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. - Eur. J. 2016, 22, 8547.

(17) See the Supporting Information for details.

(18) Pd/t-BuXPhos-catalyzed carboxylation of aryl bromides: Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.

(19) (a) Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tunge, J. A. J. Am. Chem. Soc. **2010**, 132, 9280. (b) Recio, A., III; Heinzman, J. D.; Tunge, J. A. Chem. Commun. **2012**, 48, 142. (c) Yang, M.-H.; Hunt, J. R.; Sharifi, N.; Altman, R. A. Angew. Chem., Int. Ed. **2016**, 55, 9080.

(20) Nicolaou, K. C.; Estrada, A. A.; Freestone, G. C.; Lee, S. H.; Alvarez-Mico, X. *Tetrahedron* **2007**, *63*, 6088.

(21) Maegawa, Y.; Ohshima, T.; Hayashi, Y.; Agura, K.; Iwasaki, T.; Mashima, K. ACS Catal. **2011**, *1*, 1178.

(22) Mal, D.; Roy, J. Tetrahedron 2015, 71, 1247.

(23) Tidwell, J. H.; Peat, A. J.; Buchwald, S. L. J. Org. Chem. 1994, 59, 7164.

(24) Tidwell, J. H.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11797.

(25) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692.

(26) Pete, B.; Bitter, I.; Harsányi, K.; Tőke, L. *Heterocycles* 2000, *53*, 665.