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Synthesis of multiple-substituted dihydrofurans via palladium-

catalysed coupling between 2,3-alkadienols and pronucleophiles 

 

Hirokazu Tsukamoto,
*
 Kazuya Ito and Takayuki Doi 

Multiple-substituted dihydrofurans were obtained by palladium-

catalysed coupling reaction between 2,3-alkadienols and ketones 

bearing an electron-withdrawing group at the αααα-position. 

Methanol as a solvent was essential for the initial dehydrative 

substitution to suppress competitive hydroalkylation of the diene 

moiety. The substitution would be followed by intramolecular 

hydroalkoxylation under the same catalysis. 

A nucleophilic substitution of a hydroxyl group without 

transforming it into a leaving group such as halide and 

sulphonate is very attractive in modern organic synthesis in 

terms of step-economy and waste minimisation.
1 

Although 

Mitsunobu reaction
2
 is classified as a dehydrative substitution 

applicable to a wide range of alcohols, it generates a 

stoichiometric amount of side products that are difficult to 

remove. On the other hand, Friedel-Crafts and Tsuji-Trost 

reactions, using transition metal-catalysed dehydrative 

substitutions of π-activated alcohols including allylic, 

propargylic and benzylic ones have recently received 

considerable attention because these reactions form only 

water as a byproduct.
3, 4 

Tsuji-Trost reaction using allylic 

alcohol, instead of its acetate that is commonly utilised for this 

reaction, can exclude a base additive for the catalyst 

turnover but requires certain reaction conditions including 

special ligands
5
, acidic additives

6
, or protic media

7
 to improve 

the low leaving ability of hydroxide ion. In contrast to allylic 

alcohol
4–8

, the transformation of allenic alcohol, which can also 

lead to a π-allylpalladium intermediate upon activation,
9–12

 has 

received only scattered attention (Scheme 1). To the best of 

our knowledge, Tsuji-Trost-type substitution reaction of allenic 

alcohol 1 with pronucleophile 2 leading to the formation of 

dehydration product 5 via exo-alkylidene-π-allylpalladium 

intermediate 3
13

 has never been developed, although a couple 

of transformations of 1 into 1,3-diene 4 have been reported 

(Scheme 1).
9–11 

The dehydrative allenylation of 2 would be 

more difficult than simple allylation owing to two possible side 

reactions: 1) hydroalkylation of allene under palladium 

catalysis to give 9;
14–16

 2) insertion of allene 1 into 3 to give 

dimerisation product 10.
17 

Herein, we report the reaction 

conditions for the dehydrative allenylation of 2, which can 

suppress the side reactions. Moreover, we also demonstrate 

that the dehydrative allenylation of ketone 2, substituted by 

an electron-withdrawing group at the α-position, accompanied 

the cyclisation of the resulting allenic ketone 5' to give 

multiple-substituted dihydrofuran 6 in a single step. Here, it 

should be noted that other possible carbocyclic products 11 

and 12 were hardly obtained. The single-step procedure has a 

great advantage over a three-step synthesis of dihydrofuran 6 

from the common allenic alcohol 1 through 1) 

phosphorylation, 2) palladium-catalysed substitution of the 

phosphate with sodium salt of activated ketone and 3) 

intramolecular hydroalkoxylation of the resulting allenic β-

ketoesters under the catalysis of mercury oxide and p-

toluenesulfonic acid, as reported by Delair and Doutheau.
18, 19

 

 
Scheme 1 Coupling Reactions between Allenic Alcohol 1 and 2. 
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At first, 2-methyl-2,3-butadien-1-ol (1a, 1 equiv) was examined 

as an allenylating reagent for benzoylacetonitrile (2A, 2 equiv) 

on heating at 65 °C in the presence of 5 mol% 

tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] (Scheme 2, 

Table 1, entries 1–5).
9 

Aprotic solvents including toluene, THF, 

1,4-dioxane, and dichloromethane resulted in a 

hydroalkylation of 1a to give ca. 1:1 isomeric mixture of allylic 

alcohol 9aA in moderate to good yield (Table 1, entries 1–4). 

Interestingly, the use of methanol as a solvent switched the 

reaction mode from addition to substitution to afford 

dihydrofuran 6aA as a major product (entry 5).
20

 The 

formation of allenylated product 5aA' was not observed and 

would be followed by the intramolecular hydroalkoxylation of 

allene to give dihydrofuran 6aA instead (vide infra). The 

reaction temperature was also a major reason for preferring 

the substitution reaction with 80 °C, leading to the best yield 

of 6aA (entries 5–7). The molar ratio of pronucleophile 2A to 

allenic alcohol 1a was also crucial, and the use of 2 equiv of 2A 

to 1a turned out to be the best for the predominant formation 

of 6aA (entries 7–10). In contrast, the use of an excess amount 

of 1a to 2A completely shut the reaction (entry 10). Instead of 

triphenylphosphine ligand, biaryl-based diphosphines such as 

BINAP and MeO-BIPHEP with allyl(cyclopentadienyl) 

palladium(II) led to the formation of a trace amount of 6aA 

(data not shown). 

 
Scheme 2 Pd(0)-Catalysed Coupling Reaction between 1a and 2A 

Table 1 Optimisation of Reaction Conditions for the Coupling Reaction 
between 1a and 2A 

entry solvent X 

(equiv) 

 

temp 

(°C) 

 

time 

(h) 

 

yield of 

9aA (%)a 

 

yield of 

6aA (%) 

 

  

1 toluene 2.0 65 4 54 trace   

2 THF 2.0 65 2 70 trace   

3 1,4-dioxane 2.0 65 2 64 trace   

4 CH2Cl2 2.0 65 2 63 5   

5 MeOH 2.0 65 4 18 58   

6 MeOH 2.0 50 36 7 22   

7 MeOH 2.0 80 1.5 12 68   

8 MeOH 1.5 80 28 12 38   

9 MeOH 3.0 80 1 25 42   

10 MeOH 0.2 80 24 0 0   

a 
E- and Z-9aA were obtained in the ratio of ca. 1.2:1 in entries 1–9. 

With the optimised reaction conditions in hand (Table 1, entry 

7), the scope of allenic alcohols 1b–i was investigated (Table 

2). Substitution of the methyl group at C-2 in 1a by a phenyl 

group did not affect the efficiency of the coupling reaction 

with 2A to give 2,5-diphenyl-5-vinyl-4,5-dihydrofuran-3-

carbonitrile (6bA) in 71% yield (entry 1). Diphenylphosphine 

oxide as the substituent was also compatible with the reaction 

conditions to give 6cA in moderate yield (entry 2). Two 

substituents at C-2 and C-4 in 2,3-butadien-1-ol 1 were also 

tolerated and transferred to the C-5 position and the terminal 

carbon of vinyl group at C-5 of 4,5-dihydrofuran, respectively 

(entries 3 and 4). The use of 2,4,4-trisubstituted allenic alcohol 

1f also resulted in dehydrative allenylation of 2A and 

concomitant cyclisation to give 6fA in 65% yield (entry 5). The 

use of secondary alcohol 1g resulted in the formation of 4-

substituted 4,5-dihydrofuran 6gA as a diastereomeric mixture 

(entry 6). It should be noted that the parent primary alcohol 1h 

was converted into C-cyclisation product 12hA instead of O-

alkylation product 6hA (entry 7, vide infra). Unfortunately, 

unsubstituted 2,3-butadien-1-ol (1i) did not undergo 

dehydrative allenylation of 2A at all (entry 8). 

Table 2 Scope of Allenic Alcoholsa 

entry substrate product yield (%) 

 

1 

  

71 

2 

  

47 

3 

  

45 

4 

  

43 

5 

  

65 

6 

  

74 

(dr = 1 : 1) 

7 

  

80 

(dr = 1.3 : 1) 

8 

  

0 

a Reaction conditions: 1b–i (1 equiv), 2A (2 equiv), Pd(PPh3)4 (5 mol%), 
MeOH (0.1 M), 80 °C, 1. 5 h (entries 1–6), 2 h (entry 7), or 24 h (entry 8). 

Next, the scope of pronucleophiles was also investigated 

(Table 3). Instead of benzoylacetonitrile (2A), acetylacetone 

(2B) and methyl acetoacetate (2C) also underwent dehydrative 

allenylation with 1a and concomitant cyclisation to provide 3-

substituted 2,5-dimethyl-2-vinyl-2,3-dihydrofurans 6aB and 

6aC in fair yields (entries 1 and 2). Cyclic 1,3-diketone 2D also 

participated in the tandem reaction to give 

tetrahydrobenzofuranone 6aD in 43% yield (entry 3). α-

substituted cyclic ketones 2E and 2F, as well as active 

methylene compounds 2G–I bearing no ketone functionality, 

underwent dehydrative substitution of 1b, which was not 
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followed by cyclisation to furnish 1,1-disubtituted allenes 5bE–

I in moderate to good yields (entries 4–8). In contrast, the 

coupling reaction between 2,3-butadienol (1i) and dimethyl 

malonate (2G) took place, but the major product was not 

allene 5iG but triene 10iG (entry 9).  

Table 3 Scope of Pronucleophilesa 

entry substrate pronucleophile product yield (%) 

 

1 1a 
CH3COCH2COCH3 

(2B) 

 

49 

2 1a 
CH3COCH2CO2CH3 

(2C) 

 

57 

3 1a 
dimedone 

(2D) 

 

43 

4 1b 

 

 

51 

5 1b 

 

 

53 

6 1b 
CH2(CO2Me)2 

(2G) 

 

60 

7 1b 
CH2(CN)2 

(2H) 

 

58 

8 1b 
CH2(SO2Ph)2 

(2I) 

 

48 

9 1i 
CH2(CO2Me)2 

(2G) 

 

58 

a Reaction conditions: 1 (1 equiv), 2B–I (2 equiv), Pd(PPh3)4 (5 mol%), 
MeOH (0.1 M), 80 °C, 1. 5 h (entries 1–5, 8) or 2 h (entries 6, 7, 9). 

As reported in the literature on Tsuji-Trost reaction using allylic 

alcohols in protic media,
7
 methanol is the best solvent for 

dehydrative coupling reaction between allenic alcohol 1 and 2, 

which activate the poor leaving ability of the hydroxyl group in 

1 via hydrogen-bond (Scheme 1). In methanol, the oxidative 

addition of allenic alcohol 1 to palladium(0) could predominate 

over that of pronucleophile 2, and the latter leads to the 

formation of hydroalkylation product 9. The substituent R
1
 at 

C-2 would help to avoid the undesired carbopalladation of 1 

with exo-alkylidene-π-allylpalladium intermediate 3 to give 

dimerisation product 10. 

To reveal the requirements for the concomitant cyclisation, 

allenylated ketone 5aA', prepared by allenylation of 2A with 

methanesulfonate of 1a under basic conditions, was subjected 

to the reaction conditions shown in Scheme 3. The O-

cyclisation of 5aA' proceeded under the palladium catalysis in 

either methanol or THF as a solvent, whereas no reaction took 

place in the absence of the catalyst (see supporting 

information). Hence, dihydrofuran 6aA would be formed by 

intramolecular hydroalkoxylation of allene 5aA' via either π-

allylpalladium intermediates 14 or 15.
21, 22

 On the contrary, the 

palladium-catalysed cyclisation of phenyl-substituted allene 

5hA' was dependent on the solvent with THF and methanol, 

leading to dihydrofuran 6hA and cyclopentene 12hA, 

respectively. In addition, the exposure of 6hA to the catalyst in 

methanol caused rearrangement to 12hA. Although it is not 

clear yet, the exceptional C-cyclisation of 5hA' takes place only 

in methanol through syn,anti-π-allylpalladium 15 with properly 

arranged substituents (R
1
=Ph, R

2
≠H, R

3
=H)(Table 2, entry 7 vs. 

1, 3, 5, 6).
23 

 
Scheme 3 Pd(0)-Catalysed Cyclisation of 5aA' and 5hA' Leading to 

Dihydrofuran 6aA·6hA and Cyclopentene 12hA 

In summary, we have developed a Tsuji-Trost-type reaction 

using allenic alcohols with pronucleophiles under neutral 

conditions. Both methanol solvent and a substituent at C-2 in 

2,3-butadienols turned out to be essential for the dehydrative 

coupling reaction. Palladium complex plays a dual role in the 

dihydrofuran synthesis to catalyse not only allenylation of 

enolisable ketone pronucleophiles but also the following O-

cyclisation. Further studies on the asymmetric variant of the 

reaction are underway. 
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