The Journal of Organic Chemistry

Subscriber access provided by Gothenburg University Library

Article

Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes

Marek #ubi#ák, and Tomáš Tobrman

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01254 • Publication Date (Web): 16 Jul 2020 Downloaded from pubs.acs.org on July 25, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

4

5 6

7 8

9

10 11

12 13

14

15

16 17

18

19

20 21

22

23 24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

52

53 54

55

56

57

58

59

60

Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of **Tetrasubstituted Alkenes**

Marek Čubiňák^a and Tomáš Tobrman*^a

^aDepartment of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic. Email: tomas.tobrman@vscht.cz

Abstract

The present study investigated the ability of bromovinyl phosphates to react with organozinc reagents at room temperature during palladium-catalyzed reactions. It was determined that both the bromine atom and the phosphate group were successfully substituted by means of the reaction with the organozinc reagents, thereby allowing for the synthesis of cyclic and acyclic tetrasubstituted double bonds. The low stability of the organozinc compounds in an acidic environment was exploited to accomplish the synthesis of alkenes using a one-pot, two-step experimental setup.

Introduction

The intentional construction of a single C-C bond remains the principal focus of organic synthesis. More specifically, cross-couplingbased reactions are frequently used to synthesize C–C bonds. This synthesis is usually achieved via the reaction between electrophilic and nucleophilic templates. It has previously been determined that a diverse range of electrophilic templates can be used in crosscoupling reactions. Among them, organohalides represent the most commonly used electrophilic template.¹ In recent years, it has been found that activated C-H,² C-N,^{2b,3} and C-S^{2b,4} bonds can also be used as efficient reaction partners in cross-coupling chemistry.

In addition to the above-mentioned templates, the cross-coupling reactions of activated C–O bonds^{3b,5} remain popular in relation to the synthesis of a C-C bond. In terms of the other possibilities for C-O bond phosphates, especially vinyl activation, phosphates, have been found to have a number of practical applications. For instance, in 1999, Aggarwal synthesized (+)-Anatoxin-a,⁶

while Fuwa reported the total synthesis of gambieric acid A,⁷ (+)-neopeltolide,⁸ and the C15–C38 fragment of okadaic acid.⁹ The widespread use of vinyl phosphates in organic synthesis can be attributed to their high availability, good stability under various conditions, and good reactivity in cross-Previous work:

$$\begin{array}{c} R^{1} OP(O)(OR^{4})_{2} \xrightarrow{RMgX} \\ R^{2} R^{3} \\ \textbf{1a, h} \\ Ni-cat, THF, 23 \ ^{\circ}C \ ^{ref \ 13d} \end{array} \xrightarrow{R^{1} R^{2}} R^{2} R^{2} \\ \end{array}$$

1b,
$$R^{2,3}$$
 = alkyl, aryl, R^4 = Et or Ph

Nakatsuji ^{ref 12d}

F

1a.b

Tobrman ref 19

Scheme 1 Recent examples of the transition-metalcatalyzed cross-coupling reactions of vinyl phosphates. coupling reactions.¹⁰ For these reasons, phosphates have previously been coupled with organoaluminium,¹¹ boronic acids,¹² Grignard reagents,¹³ organozinc reagents,^{12c,12d,13g,14} and alkenes.¹⁵ It is important to note that the applications of phosphates are not limited to cross-coupling reactions with alkenes, as the phosphate group can also be used as a directing group¹⁶ as an electrophilic partner for C–H activation¹⁷ and for the purposes of carbonylation.¹⁸

1 2 3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53 54

55

56

57

58

59 60

The ability of the phosphate group to react with organometallic reagents during cross-coupling reactions is influenced by a number of factors. Aside from the effects of the utilized catalyst and ligand, the steric effects of vinyl phosphates as well as the degree of nucleophilicity of the utilized organometallic reagents represent the two major factors that affect the course of cross-coupling reactions. For instance, Grignard reagents react with the unhindered vinyl phosphates 1a at room temperature^{13d,13e} (Scheme 1). Yet, the use of sterically demanding vinyl phosphates, such as trisubstituted vinyl phosphates 1b, leads to an increase in the reaction temperature.^{13g} A similar phenomenon can be observed in the case of certain organozinc reagents, whereby trisubstituted (diphenyl)vinyl phosphates 3 react with organozinc reagents in refluxing acetonitrile or tetrahydrofuran (THF).^{12d} We have previously determined that aluminum chloride decreases the reaction temperature during the cross-coupling reaction of the trisubstituted vinyl phosphates 5 with organozinc reagents to 45 °C.^{19a,e}

The apparent inability of trisubstituted vinyl phosphates to react with organozinc reagents at ambient temperature conflicts with reports of the Negishi reaction being conducted at room temperature.²⁰ During our recent synthetic efforts to conduct transitionmetal-catalyzed reactions in the pursuit of organic synthesis¹⁹ we decided to investigate the ability of trisubstituted vinyl phosphate to react with organozinc reagents at room temperature. The strategy proposed for the synthesis of tetrasubstituted alkenes begins with the preparation of the trisubstituted vinyl phosphates **7** (Scheme 2). Based on our previous report,^{19a,e} we chose the cyclic bromovinyl phosphates **6** as the starting substrates. However, this type of bromovinyl phosphate was only coupled with boronic acid in the temperature range 50–60 °C.^{19a,b,e} Therefore, we decided to improve its performance through the use of organozinc

Results and discussion

A brief investigation of the reaction between the bromocyclohexenyl phosphate 6a and 4methoxyphenylzinc chloride in the presence of palladium acetate showed that only the negligible conversion of the 6a into the phosphate 7aa was achieved (Table 1, entry 1). Interestingly, substantially higher conversions of the phosphate 6a were achieved when the Buchwald-type ligands were used, while the bidentate 1,3-bis(diphenylphosphino)propane (dppp) ligand proved unable to catalyze the reaction (Table 1, entries 2–7). It is important to note that all the above-mentioned reactions were contaminated by the formation of the undesired symmetrically substituted cyclohexadiene **8a** (Table 1, note e). Unfortunately, the cyclohexene 8a could not be separated from the homocoupling reaction product, which meant that the yield of the 8a was not determined. No cyclohexene 8a was formed during the cross-coupling reaction of the diethyl phosphate 6b (Table 1, entries 4 and 6). The use of the 2dicyclohexylphosphino-2',4',6'-

triisopropylbiphenyl (XPhos) ligand proved fruitful, as the almost quantitative conversion of the starting phosphate **6a** was observed (Table 1, entry 8). Reducing the amount of 4methoxyphenylzinc chloride allowed for the complete conversion of the phosphate **6a** by avoiding the formation of a symmetrical product **8a**. Moreover, it also allowed for the almost quantitative isolation of product **7aa**. Similar results were obtained in reactions carried out at 40 °C and 23 °C (Table 1, entries 9–11).

Table 1 Optimization of the Negishi reaction betweenthe phosphates **6a** and **6b** and 4-methoxyphenylzincchloride.

OP(Br 6a, R = Ph 6b, R = Et	0)(0R) <u>;</u>	$\frac{2}{P} \frac{MeO}{\sqrt{1.5}} - \frac{ZnC}{(1.5)}$ $\frac{1}{Pd(OAc)_2, \text{ ligand, TH}}$ $\frac{1}{Pd(OAc)_2, \text{ ligand, TH}}$	$ \begin{array}{c} \text{I} \cdot \text{LiCI} \\ equiv) \\ \text{IF, temp} \\ \text{IF, temp} \\ \text{I} \\ \text{H}_4 \\ \text{H}_4 \\ \text{H}_4 \end{array} $	$OP(O)(OR)_2$ 4-MeOC ₆ H ₄ aa, R = Ph ba, R = Et
Entry	6	Ligand ^a	Temp (°C)	7 , Conv. (%)
1	6a	PPh₃	60	7aa , 18
2	6a	SPhos	60	7aa , 61 (47 ^{b,e})
3	6a	DavePhos	60	7aa , 83 ^e
4	6b	DavePhos	60	7ba , 100 (72 ^b)
5	6a	RuPhos	60	7aa , 49 (38 ^{b,e})
6	6b	RuPhos	60	7ba , 100 (69 ^b)
7	6a	dppp	60	7 aa, — ^{c,e}
8	6a	XPhos	60	7aa , 96 ^e
9	6a	XPhos	60	7aa , 100 (91 ^{b,d})
10	6a	XPhos	40	7aa , 100 (88 ^{b,d})
11	6a	XPhos	23	7aa , 100 (91 ^{b,d})

^aTypical reaction conditions: A solution of organozinc chloride was added to a mixture of Pd(OAc)₂ (4 mol%) and ligand (8 mol%) in dry THF. The resultant mixture was stirred at the indicated temperature for 12 h. ^bIsolated yield. Formation of phosphate **7aa** was not observed. The product of biscoupling **8a** was formed in this case. ^d1.2 equiv. of 4methoxyphenylzinc chloride was used. ^eA significant amount of the symmetrically substituted cyclohexadiene **8a** was formed.

The ability of the diphenyl phosphate 6a to provide a trace amount of the phosphate group substitution product 8a indicates that this phosphate should be the substrate of choice when exploring the extent of the Negishi reactions of the bromovinyl phosphates 6a and 6c-6f with various organozinc reagents. In addition to the electron-neutral substituents 7ab and 7ae, the developed methodology allowed for the smooth introduction of the para-substituted phenyl ring with the electron-donating 7af and the electron-withdrawing 7ag groups as well as of the halogen atoms 7ac and 7ad in excellent isolated yields (Scheme 3). Excellent reactivity was also observed in the case of the 1naphthyl- and 2-naphthylzinc chlorides 7ah and **7ai**, although the heteroaromatic organozinc reagents yielded the products 7aj-7an in good yields. Aliphatic and alkenyl substituents 7ao, 7ap, 7aq and 7ar are also introducible via this method. The scope of the substitution at bromine atom room temperature was extended to the cyclic bromovinyl phosphates 6c-6f. The results showed that the best isolated yields of the cyclic phosphates were obtained in the case of the 4-6-membered carbocycles 7ca, 7da and 7aa, while moderate isolated yields were provided by the cycloheptene and cyclooctene derivatives 7ea and7fa.

With the phosphates 7 having been obtained, we optimized the phosphate substitution reaction. Thus, the starting compound 7aa was treated with 4-tolylzinc chloride under different reaction conditions (Table 2). In accordance with previous reports, the phosphate 7aa coupled with the organozinc reagent in the presence of Pd(OAc)₂ and the dppp ligand at 60 °C, thereby affording the product **8b** in a 96% yield, although the same reaction yielded no product when performed at 45 °C and 23 °C (Table 2, entries 1–3). The use of aluminum chloride as an additive gave the alkene 8b in an 81% isolated yield, thereby maintaining the quantitative conversion. The use of two equivalents of 4tolylzinc chloride increased the yield of the alkene 8b to 86% (Table 2, entries 4-6). The other tested ligands proved to be less efficient (Table 2, entries 7 and 8).

The reaction conditions developed for phosphate substitution at room temperature (Table 2, entry 6) were also applied to other organozinc reagents (Scheme 4). Uniformly high isolated yields of the cyclohexenes **8b–8f** were obtained in the case of the substituted phenyl ring bearing halogen atoms as well as electron-donating and electron-withdrawing groups. A similar reactivity pattern was observed for the 2-furyl- **8h** and 2-thienylzinc chloride **8i** as well as for the fused analogues **8j** and **8k**. The 2-naphthyl-**8m** and 1-naphthylzinc chloride **8n** also coupled with the phosphate **6aa**, although the latter substrate required the addition of DPEPhos as well as heating to 45 °C to achieve the complete conversion of the starting phosphate **7aa**. This result indicated that the incomplete conversion of the phosphate **7aa** during the reaction with the 1-naphthylzinc chloride was the result of steric factors. To verify this hypothesis, we reacted the phosphate **7aa**

Scheme 3 Substitution of the bromine atom via the Negishi reaction at room temperature.

Table 2 Optimization of the Negishi reaction between thephosphate **7aa** and 4-tolylzinc chloride.

time periods indicated in the table. $^{\rm b}$ Isolated yield. $^{\rm c}2$ equiv of 4-tolylzinc chloride was used.

with 2-tolylzinc chloride. The incomplete conversion of the **7aa** was observed when the reaction was performed in the presence of the dppp ligand at 23 °C. The use of the DPEPhos ligand as well as the heating of the reaction mixture to 45 °C resulted in the complete conversion of the phosphate **7aa** while the product **8o** was isolated in a 96% yield. A similarly positive result was obtained in relation to the aliphatic organozinc reagent. Analogous to the first cross-coupling reaction, the other cyclic phosphates, namely **7ca**, **7da**, **7ea** and **7fa** reacted with 4-methoxyphenylzinc

OF 7aa	P(O)(OPh) ₂	I-MeC ₆ H ₄ ZnCI•LiCI (1.5 equiv) Pd(OAc) ₂ (4 mol%), ligand, additives, THF, temp, 12 h	86	Me OMe
Entry	Ligand ^a	Additives	Temp	Conv. (%)
			(\mathbf{C})	
1	dppp	-	60	100 (96 ^b)
2	dppp	-	45	0
3	dppp	-	23	0
4	dppp	AICI ₃	45	95 (79 ^ь)
5	dppp	AICI ₃	23	100 (81 ^b)
6	dppp	AICI ₃	23	100 (86 ^{b,c})
7	RuPhos	AICI ₃	45	67
8	DPEPhos	AICI ₃	45	74

^aTypical reaction conditions: A solution of organozinc reagent (1.5 equiv.) was added to a mixture of $Pd(OAc)_2$ (4 mol%), ligand (4 mol% for the bidentate ligand, 8 mol% for the monodentate ligand), and phosphate (1.0 equiv.). The resultant mixture was stirred at the temperatures and for the

chloride at 23 °C, thereby yielding the corresponding alkenes **8p–8s**.

Scheme 4 The scope of the phosphate substitution by the aluminum chloride promoted the Negishi reaction at room temperature. ^aThe reaction was catalyzed by $Pd(OAc)_2/DPEPhos at 45 °C$.

Inspired by the known properties of the organozinc reagents, we developed a simple one-pot, two-step procedure for the preparation of tetrasubstituted cyclic alkenes. In doing so, we exploited the low stability of organozinc compounds in an acidic environment. Thus, the phosphates 6a,6c and 6d reacted with 1.2 equiv. of aryl/heteroarylzinc chloride under the catalysis of Pd(OAc)₂/XPhos in THF at 23 °C. At the end of the reaction, the excess organozinc reagent was quenched with 0.2 equiv of pivalic acid, while the second Negishi reaction completed the synthesis of the alkenes 8 in excellent isolated yields (Scheme 5). It is important to note, that palladium acetate and the dppp ligand must be added in order to accomplish the one-pot synthesis of the cyclic alkene 8b in high isolated yield. Indeed, performing the second Negishi reaction without the addition of palladium acetate and the dppp ligand inhibited the second reaction and the formation of alkene 8b was not observed in the crude reaction mixture. Moreover, the addition of only the dppp ligand reduced the isolated

yield of alkene **8b** to 65%. The other cyclohexene derivatives namely **8l**, **8t**, **8u**, **8w** and **8x** with electron-rich or electron-neutral phenyl groups as well as 2-thienyl and 1methyl-2-indolyl moiety were prepared in similarly high isolated yields. The introduction of an electron-poor substituent during first step significantly reduced the isolated yield of the alkenes **8v** and **8y** although some improvement was obtained when the reaction mixture was heated to 45 °C. The developed one-pot methodology was also successfully used for the preparation of the four- and fivemembered cyclic alkenes **8p** and **8q**.

Scheme 5 The one-pot, two-step synthesis of 1,2disubstituted cyclohexenes. ^aOnly the dppp ligand was added during the second cross-coupling reaction. ^bThe reaction was performed at 45 °C.

Scheme 6 Double Negishi reaction of phosphates 6g and $6h.\ ^{a}The\ reaction\ was\ catalyzed\ by\ Pd(OAc)_{2}/DPEPhos\ at\ 45\ ^{\circ}C$

Using the methodology developed for the conversion of cyclic bromovinyl phosphates we also investigated the behavior of acyclic bromovinyl phosphates. The easily available acyclic bromovinyl phosphate 6g was smoothly converted into the trisubstituted vinyl phosphate 7gs in a 79% isolated yield. However, the second Negishi reaction gave the alkene 9a in only a 49% isolated yield. A similar reactivity pattern was identified in relation to asymmetrically the substituted vinvl phosphate 6h. In addition, we observed the formation of the alkene 9b as a single stereoisomer by ¹H NMR spectroscopy.

Conclusions

In conclusion, we have demonstrated that bromovinyl phosphates can be used as double electrophilic templates for the synthesis of tetrasubstituted alkenes by means of a double Negishi reaction performed at room temperature. The bromine atom was substituted by the Pd(OA)₂/XPhos ligand, while the phosphate group smoothly coupled with the organozinc reagents in the presence of the Pd(OA)₂/dppp catalyst. Both reactions were performed in dry THF at 23 °C. The bromine atom and phosphate group substitution can be combined in a one-pot, two-step procedure in order to synthesize a tetrasubstituted double

bond that requires only the separation of the final product.

Experimental section

General Information

All reactions were performed under argon atmosphere. NMR spectra were measured on Varian MercuryPlus 300 (¹H, 300.13 MHz; ¹³C, 75.46 MHz), Agilent 400MR DD2 (¹H, 400.13 MHz: ¹³C. 100.61 MHz) or Bruker Avance III 500 (³¹P, 202.45 MHz) spectrometer at 298 K. Chemical shifts of ³¹P NMR spectra are referenced to the signal of 85% H₃PO₄ that was assigned the chemical shift of 0. Mass spectra were measured on ZAB-SEQ (VG Analytical). The dry and degassed THF was prepared by PureSolv MD7. Silica gel (Merck, Silica Gel 60, 40–63 µm or Merck Silica Gel 60, 63-200 µm) was used for column chromatography. n-BuLi (2.5 M solution in hexane), and other compounds were purchased from Sigma-Aldrich, FLuorochem and Acros Organics. Concentration of BuLi was determined by titration using menthol and 1,10-phenanthroline before use.

General procedure for the preparation of phosphates 6

To a solution of HMDS (1.2 equiv) in THF (0.5 mL/mmol) cooled to 0 °C was dropwise added BuLi (1.2 equiv) and the reaction mixture was stirred at 0 °C for 10 minutes. The resultant LiHMDS was cooled to -78 °C and a solution of α-bromoketone (1.0 equiv) in dry THF (1 mL/mmol) was dropwise added. The reaction mixture was stirred at -78 °C for 30 minutes followed by addition of diphenyl chlorophosphate (1.3 equiv) and the mixture was allowed warmed up to ambient temperature. Then the solution was stirred at 23 °C for 4 hours, the crude reaction mixture was quenched with water (5 mL/mmol), water layer was extracted with diethyl ether (3x10 mL/mmol) and the organic layer was washed with brine (5 mL/mmol) and dried over MgSO₄. The solvents were evaporated under reduce pressure and column chromatography afforded the pure product.

2-Bromocyclohex-1-en-1-yl diphenyl phosphate (6a). Lselectride (26.7 mL, 26.7 mmol, 1 M in THF) was added to a solution of cyclohex-2-enone (4.24 g, 24.2 mmol) in THF (60 mL) cooled to -78 °C. The resultant mixture was stirred at -78 °C for 1 h. Then diphenyl chlorophosphate (4.1 mL, 19.8 mmol) was added and the reaction mixture was stirred at 23 °C for 4 h. The crude mixture was quenched with water (200 mL), water layer was extracted with diethyl ether (3x200 mL), washed with brine (100 mL) and the organic layer was dried over MgSO₄. The solvents were evaporated under reduce pressure and column chromatography (Hexane:EtOAc 6:1, $R_f = \approx 0.3$) afforded 6.94 g (70 %) of the title compound as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.33 (m, 4H), 7.31-7.28 (m, 4H), 7.23-7.19 (m, 2H), 2.51 (s, 2H), 2.44 (s, 2H), 1.78–1.71 (m, 2H), 1.71–1.64 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.5 (d, J = 7.6 Hz), 144.5 (d, J = 7,2 Hz),

59

60

129.9, 125.6, 120.3 (d, J = 4.7 Hz), 108.6 (d, J = 10.2 Hz), 34.3, 29.2, 23.7, 22.5. ³¹P NMR (202 MHz, CDCl₃) δ -17.92. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₁₈BrO₄P 409.0199; Found 409.0202.

2-Bromocyclohex-1-en-1-yl diethyl phosphate (6b). Prepared according to the general procedure starting from HMDS (2.0 g, 12.4 mmol), BuLi (4.41 mL, 12.4 mmol, 2.57 M), THF (5 mL). Then a solution of 2bromocyclohexanone (1.83 g, 10.3 mmol) in dry THF (5 mL) was dropwise added to a solution of LiHMDS cooled to 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes followed by addition of diethyl chlorophosphate (2.0 mL, 13.8 mmol). Column chromatography (Hexane:EtOAc 3:1, $R_f = \approx 0.3$) afforded 1.71 g (53 %) of the title compound as a light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.27-4.16 (m, 4H), 2.53-2.42 (m, 4H), 1.79-1.65 (m, 4H), 1.39–1.30 (m, 6H).¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.4 (d, J = 6.6 Hz), 107.5 (d, J = 9.8 Hz), 64.5 (d, J = 6.3 Hz), 34.3 (d, J = 0.7 Hz), 29.1 (d, J = 0.9 Hz), 23.8, 22.5, 16.1 (d, J = 7.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -6.67. HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{10}H_{18}BrO_4P$ 313.0199; Found 313.0201.

2-Bromocyclobut-1-en-1-yl diphenyl phosphate (**6c**). Prepared according to the general procedure from HMDS (1.93 g, 12.0 mmol), BuLi (4.55 mL, 10.92 mmol, 2.4 M), THF (8 mL), 2-bromocyclobutanone (1.46 g, 9.80 mmol), THF (10 mL), and diphenyl chlorophosphate (2.7 mL, 13.0 mmol). Column chromatography (Hexane:EtOAc 6:1, R_f = \approx 0.3) afforded 1.104 g (30 %) of the title compound as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, *J* = 7.9 Hz, 1H), 7.32–7.18 (m, 1H), 2.95–2.83 (m, 1H), 2.52–2.41 (m, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.2 (d, *J* = 7.4 Hz), 140.3 (d, *J* = 8.0 Hz), 130.0, 125.9, 120.1 (d, *J* = 4.9 Hz), 90.9 (d, *J* = 12.9 Hz), 33.6, 28.6. ³¹P NMR (202 MHz, CDCl₃) δ -18.37. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₆H₁₄BrO₄P 380.9886; Found 380.9873.

2-Bromocyclopent-1-en-1-yl diphenyl phosphate (6d). Lselectride (5.3 mL, 5.3 mmol, 1 M in THF) was added to a solution of cyclopent-2-enone (0.77 g, 4.80 mmol) in THF (15 mL) cooled to -78 °C. The resultant mixture was stirred at -78 °C for 1 h. Then diphenyl chlorophosphate (0.81 mL, 3.9 mmol) was added and the reaction mixture was stirred at 23 °C for 4 h. The crude mixture was quenched with conc. NH₄Cl solution (50 mL), water layer was extracted with diethyl ether (3x50 mL), washed with brine (100 mL) and the organic layer was dried over MgSO₄. The solvents were evaporated under reduce pressure and column chromatography (Hexane:EtOAc 6:1, $R_f = \approx 0.3$) afforded 1.89 g (63 %) of the title compound as a light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (t, J = 7.7 Hz, 4H), 7.31–7.24 (m, 4H), 7.21 (t, J = 7.5 Hz, 2H), 2.66–2.50 (m, 4H), 2.02 (p, J = 7.7 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.3 (d, J = 7.5 Hz), 146.3 (d, J = 6.5 Hz), 129.9, 125.7, 120.2, 103.3 (d, J = 11.2 Hz), 34.7, 30.3, 20.0. ³¹P NMR (202 MHz, CDCl₃) δ -19.89. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆BrO₄P 395.0042; Found 395.0037.

2-Bromocyclohept-1-en-1-yl diphenyl phosphate (6e). Prepared according to the general procedure starting from HMDS (1.20 g, 7.4 mmol), BuLi (3.1 mL, 7.44 mmol, 2.4 M), THF (6 mL), 2-bromocycloheptanone (1.18 g, 6.2 mmol), THF (6 mL), and diphenyl chlorophosphate (1.67 g, 8.1 mmol). Column chromatography (Hexane:EtOAc 6:1, $R_f = \approx 0.3$) afforded 0.44 g (17 %) of the title compound as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 4H), 7.30-7.24 (m, 4H), 7.24-7.17 (m, 2H), 2.71-2.63 (m, 2H), 2.61–2.53 (m, 2H), 1.73–1.61 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.47 (d, J = 7.6 Hz), 148.44 (d, J = 8.3 Hz), 129.74, 125.49 (d, J = 1.2 Hz), 120.28 (d, J = 5.0 Hz), 112.25 (d, J = 10.2 Hz), 37.21, 32.56, 29.77, 25.44 (d, J = 1.7 Hz), 24.23 (d, J = 0.9 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -17.87. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀BrO₄P 423.0355; Found 423.0347.

2-Bromocyclooct-1-en-1-yl diphenyl phosphate (6f). Prepared according to the general procedure starting from HMDS (1.29 g, 8.0 mmol), BuLi (3.3 mL, 7.92 mmol, 2.4 M), THF (6 mL), 2-bromocyclooctanone (1.37 g, 6.68 mmol), THF (6 mL), and diphenyl chlorophosphate (1.80 mL, 8.68 mmol). Column chromatography (Hexane: EtOAc 6:1, $R_f = \approx 0.3$) afforded 1.53 g (52 %) of the title compound as a yellow solid, mp = 55.8-58.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 7.8 Hz, 4H), 7.31–7.27 (m, 4H), 7.23– 7.15 (m, 2H), 2.63–2.58 (m, 2H), 2.58–2.51 (m, 2H), 1.74– 1.60 (m, 4H), 1.52 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.5 (d, J = 7.5 Hz), 146.0 (d, J = 7.8 Hz), 129.8, 125.5, 120.3 (d, J = 4.9 Hz), 111.1 (d, J = 9.9 Hz), 35.4, 30.9, 28.5, 28.3 (d, J = 2.3 Hz), 26.3, 25.5. ³¹P NMR (202 MHz, CDCl₃) δ -17.93. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₂BrO₄P 437.0512; Found 437.0494.

2-Bromo-1,2-diphenylvinyl diphenyl phosphate (6g). Prepared according to the general procedure starting from HMDS (1.19 g, 7,37 mmol), BuLi (3.1 mL, 7.44 mmol, 2.4 M), THF (6 mL), desyl bromide (1.70 g, 6.18 mmol), THF (6 mL), and diphenyl chlorophosphate (1.66 mL, 8.0 mmol). Column chromatography (Hexane:EtOAc 6:1, R_f = \approx 0.3) afforded 1.83 g (58 %) of the title compound as a gray solid, mp = 75.0-80.0 and 97.0-97.8 °C. According to ¹³C NMR the title compound was isolated as a single stereoisomer. The double bond stereoselectivity was not determined but by analogy with previous report²¹ we reasoned that a *trans*-stereoisomer is formed. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, J = 7.7 Hz, 1H), 7.23-7.18 (m, 1H), 7.19–7.13 (m, 1H), 7.13–7.08 (m, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.5 (d, J = 7.4 Hz), 145.7 (d, J = 8.4 Hz), 137.4, 133.0, 130.3 (d, J = 1.5 Hz), 129.8, 129.7, 129.2, 128.5, 128.2, 128.1, 125.4, 120.2 (d, *J* = 5.0 Hz), 113.1 (d, J = 10.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -17.88. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₀BrO₄P 507.0355; Found 507.0329.

(Z)-1-Bromo-1-phenylhex-1-en-2-yl diphenyl phosphate (6h). To a solution of 1,1-dibromohex-1-en-2-yl diphenyl phosphate (1.273 g, 2.60 mmol), phenylboronic acid (0.44 g, 3.61 mmol), Pd(OAc)₂ (11.7 mg) and PPh₃ (41.0 mg) in toluene (10 mL) was added K₃PO₄ (3.6 mL, 2M in water) and the reaction mixture was placed in an oil bath at 45 °C and stirred for 12 h. Column chromatography (Hexane:EtOAc 6:1, R_f = ≈0.4) afforded 0.918 g (72%) of the title compound as an yellow solid, mp = 59–62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.29 (m, 8H), 7.24–7.19 (m, 2H), 2.41–2.34 (m, 2H), 1.49–1.39 (m, 2H), 1.20–1.07 (m, 2H), 0.73 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.6 (d, *J* = 7.4 Hz), 148.3 (d, *J* = 8.1 Hz), 137.6, 129.8, 129.5 (d, *J* = 1.6 Hz), 128.7, 128.5, 125.5, 120.2 (d, *J* = 5.0 Hz), 109.7 (d, *J* = 10.0 Hz), 31.6, 29.0, 21.9, 13.6. ³¹P NMR (202 MHz, CDCl₃) δ -18.44. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₄H₂₄BrO₄P 487.0668; Found 487.0673.

General procedure for the Negishi reaction of bromovinyl phosphates 6 (GP1)

Organozinc chloride (1.2 equiv) was added to a solution of phosphate **6**, Pd(OAc)₂ (4 mol%) and XPhos (8 mol%) in THF (1 mL). The resultant mixture was stirred at 23 °C for 12 hours, afterthat the reaction mixture was quenched with tartaric acid (10 mL, 1M solution in water). The water layer was extracted with diethyl ether (3x15 mL), the organic layer was dried over MgSO₄ and the solvents were removed under reduce pressure. The product was isolated by column chromatography (Hexane:EtOAc 6:1, $R_f = \approx 0.3$).

2-(4-Methoxyphenyl)cyclohex-1-en-1-yl diphenyl phosphate (7aa). Prepared according to GP1 starting from phosphate **6a** (132.8 mg, 0.32 mmol), 4methoxyphenylzinc chloride (0.79 mL, 0.40 mmol, 0.5 M), Pd(OAc)₂ (2.9 mg) and XPhos (12.3 mg), yield 129.0 mg (91%), white solid, mp = 74.5-77.0 °C. Large scale preparation: phosphate 6a (6.73 g, 16.45 mmol), 4methoxyphenylzinc chloride (40.3 mL, 19.75 mmol, 0.49 M), Pd(OAc)₂ (0.15 g, 0.67 mmol) and XPhos (0.63 g, 1.32 mmol), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 5.08 g (71%). ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.25 (m, 4H), 7.22 (d, J = 8 Hz, 2H), 7.20-7.14 (m, 2H), 7.06-7.02 (m, 4H), 6.76 (d, J = 8 Hz, 2H), 3.81 (s, 3H), 2.56 (s, 2H), 2.40 (s, 2H), 1.88-1.81 (m, 2H), 1.78-1.71 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.3, 150.6 (d, J = 7.4 Hz), 142.5 (d, J = 8.4 Hz), 131.2, 129.6, 129.4, 125.1, 123.6 (d, J = 8.6 Hz), 120.0 (d, J = 5.0 Hz), 113.4, 55.2, 30.7, 28.3, 23.1, 22.5. ³¹P NMR (202 MHz, CDCl₃) δ -17.55. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₅H₂₅O₅P 437.1512; Found 437.1513.

2-(4-Methoxyphenyl)cyclohex-1-en-1-yl diethyl phosphate (7ba). Prepared according to modified GP1 starting from phosphate **6b** (114.9 g, 0.37 mmol), 4-methoxyphenylzinc chloride (1.2 mL, 0.6 mmol, 0.5 M), Pd(OAc)₂ (3.3 mg) and RuPhos (13.6 mg), and the reaction mixture was placed in an oil bath at 60 °C and stirred for 12 h, hexane:EtOAc (4:1, R_f = \approx 0.3), yield 86.0 mg (69 %), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 3.94–3.72 (m, 7H), 2.51–2.41 (m, 2H), 2.37– 2.30 (m, 2H), 1.85–1.75 (m, 2H), 1.75–1.66 (m, 2H), 1.17 (dd, J = 7.0, 1.0 Hz, 6H).¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.2, 142.4 (d, J = 8.2 Hz), 131.8 (d, J = 1.6 Hz), 129.5 (d, $J = 0.9 \text{ Hz}), 122.4 \text{ (d, } J = 8.1 \text{ Hz}), 113.2, 63.7 \text{ (d, } J = 6.1 \text{ Hz}), 55.3, 30.4 \text{ (d, } J = 0.8 \text{ Hz}), 28.3 \text{ (d, } J = 0.7 \text{ Hz}), 23.0, 22.5, 16.0 \text{ (d, } J = 7.2 \text{ Hz}). {}^{31}\text{P} \text{ NMR} (202 \text{ MHz}, \text{ CDCl}_3) \delta -6.23. \text{HRMS} (APCI) m/z: [M+H]^+ Calcd For C_{17}H_{25}O_5P 341.1512; Found 341.1512.$

2-(4-tolyl)cyclohex-1-en-1-yl diphenyl phosphate (7ab). Prepared according to GP1 starting from phosphate 6a (213.8 mg, 0.52 mmol), 4-tolylzinc chloride (1.3 mL, 0.65 mmol, 0.5 M), Pd(OAc)₂ (4.7 mg) and XPhos (20.0 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 182.7 mg (83%), yellow solid, mp = 47–50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.20 (m, 4H), 7.17–7.10 (m, 4H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.97 (d, *J* = 8.2 Hz, 4H), 2.56–2.46 (m, 2H), 2.42–2.33 (m, 2H), 2.31 (s, 3H), 1.85–1.75 (m, 2H), 1.75–1.64 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5 (d, *J* = 7.5 Hz), 142.5 (d, *J* = 8.4 Hz), 136.3, 135.9, 129.5, 128.7, 128.2, 125.0, 123.9 (d, *J* = 8.6 Hz), 120.0 (d, *J* = 5.1 Hz), 30.6, 28.2, 23.0, 22.4, 21.2. ³¹P NMR (202 MHz, CDCl₃) δ -17.54. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₅H₂₅O₄P 421.1563; Found 421.1564.

2-(4-Chlorophenyl)cyclohex-1-en-1-yl diphenyl phosphate (**7ac**). Prepared according to GP1 starting from phosphate **6a** (198.3 mg, 0.48 mmol), 4-chlorophenylzinc chloride (1.20 mL, 0.58 mmol, 0.48 M), Pd(OAc)₂ (4.4 mg) and XPhos (18.5 mg), hexane:EtOAc (4:1, R_f = ≈0.3), yield 191.7 mg (90%), yellow solid, mp = 59–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.29 (m, 1H), 7.29–7.22 (m, 4H), 7.23– 7.10 (m, 6H), 7.02–6.96 (m, 3H), 2.56–2.47 (m, 2H), 2.36– 2.28 (m, 2H), 1.86–1.76 (m, 2H), 1.77–1.66 (m, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.4 (d, *J* = 7.5 Hz), 143.2 (d, *J* = 8.3 Hz), 137.2, 132.5, 129.7, 129.6, 128.2, 125.2, 123.1 (d, *J* = 8.7 Hz), 119.9 (d, *J* = 5.0 Hz), 30.5, 28.2, 23.0, 22.3. ³¹P NMR (202 MHz, CDCl₃) δ -17.63. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₂ClO₄P 441.1017; Found 441.1019.

2-(4-fluorophenyl)cyclohex-1-en-1-yl diphenyl phosphate (7ad). Prepared according to GP1 starting from phosphate 6a (205.1 mg, 0.50 mmol), 4-fluorophenylzinc chloride (1.4 mL, 0.62 mmol, 0.44 M), $Pd(OAc)_2$ (4.5 mg) and XPhos (19.1 mg), hexane:EtOAc (4:1, R_f = ≈0.3), yield 180.3 mg (85%), white solid, mp = 53-54.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.22 (m, 4H), 7.22–7.10 (m, 4H), 7.04–6.96 (m, 4H), 6.90–6.81 (m, 2H), 2.62–2.44 (m, 2H), 2.42–2.26 (m, 2H), 1.86–1.76 (m, 2H), 1.76–1.67 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.6 (d, J = 246.4 Hz), 150.4 (d, *J* = 7.1 Hz), 143.0 (d, *J* = 9.1 Hz), 134.6, 129.9 (dd, *J* = 1.0, 8.1 Hz), 129.6, 125.2, 123.1 (d, J = 8.1 Hz), 119.9 (d, J = 5.1 Hz), 114.8 (d, J = 21.2 Hz), 30.6, 28.2, 23.0, 22.3. ³¹P NMR (202 MHz, CDCl₃) δ -17.57. ^{19}F NMR (471 MHz, CDCl₃, CFCl₃) δ -115, 96. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₂FO₄P 425.1313; Found 425.1313.

2-(Biphenyl-4-yl)cyclohex-1-en-1-yl diphenyl phosphate (7ae).Prepared according to GP1 starting from phosphate 6a (216.8 mg, 0.53 mmol), biphenyl-4-ylzinc chloride (1.7 mL, 0.65 mmol, 0.38 M), Pd(OAc)₂ (4.8 mg) and XPhos (20.2 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 221.0 mg

59

60

(87%), off-white solid, mp = 86–90 °C ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 4H), 7.37–7.30 (m, 3H), 7.21 (t, *J* = 7.7 Hz, 4H), 7.09 (t, *J* = 7.3 Hz, 2H), 6.99 (d, *J* = 7.9 Hz, 3H), 2.60–2.50 (m, 2H), 2.47–2.36 (m, 2H), 1.88–1.78 (m, 2H), 1.79–1.69 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.5 (d, *J* = 7.4 Hz), 143.0 (d, *J* = 8.4 Hz), 141.0, 139.5, 137.9, 129.6, 128.8, 127.2, 127.0, 126.7, 125.1, 123.6 (d, *J* = 8.8 Hz), 120.0 (d, *J* = 5.2 Hz), 30.5, 28.3, 23.1, 22.4. ³¹P NMR (202 MHz, CDCl₃) δ - 17.57. HRMS (APCI) m/z: $[M+H]^+$ Calcd for C₃₀H₂₇O₄P 483.1720; Found 483.1719.

2-[4-(N,N-Dimethylamino)phenyl]cyclohex-1-en-1-yl

diphenyl phosphate (**7af**). Prepared according to GP1 starting from phosphate **6a** (219.9 mg, 0.54 mmol), 4-(*N*,*N*-dimethylamino)phenylzinc chloride (1.5 mL, 0.66 mmol, 0.44 M), Pd(OAc)₂ (4.8 mg) and XPhos (20.5 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 195.4 mg (81%), yellow solid, mp = 50.0–53.0. ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.20 (m, 4H), 7.16 (d, *J* = 8.3 Hz, 2H), 7.14–7.09 (m, 2H), 7.03–6.98 (m, 4H), 6.60 (d, *J* = 8.4 Hz, 2H), 2.92 (s, 6H), 2.51 (s, 2H), 2.36 (s, 2H), 1.82–1.76 (m, 2H), 1.72– 1.67 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.6 (d, *J* = 7.5 Hz), 149.4, 141.9 (d, *J* = 8.4 Hz), 129.5, 129.0, 126.9, 125.0, 123.7 (d, *J* = 8.6 Hz), 120.1 (d, *J* = 5.0 Hz), 112.2, 40.6, 30.5, 28.4, 23.2, 22.6. ³¹P NMR (202 MHz, CDCl₃) δ -17.41. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₈NO₄P 450.1829; Found 450.1829.

2-(4-Cyanophenyl)cyclohex-1-en-1-yl diphenyl phosphate (7ag). Prepared according to GP1 starting from phosphate 6a (188.3 mg, 0.46 mmol), 4-cyanophenylzinc chloride (2.8 mL, 0.56 mmol, 0.2 M), Pd(OAc)₂ (4.1 mg) and XPhos (17.6 mg), hexane:EtOAc (4:1, R_f = ≈0.3), yield 167.2 mg (84%), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43– 7.34 (m, 2H), 7.29–7.24 (m, 7H), 7.21–7.15 (m, 2H), 7.02– 6.98 (m, 3H), 2.60–2.48 (m, 2H), 2.38–2.31 (m, 2H), 1.88– 1.80 (m, 2H), 1.78–1.70 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.3 (d, *J* = 7.6 Hz), 144.2 (d, *J* = 8.2 Hz), 143.6, 131.7, 129.7, 129.0, 125.4, 122.7 (d, *J* = 8.6 Hz), 119.8 (d, *J* = 5.1 Hz), 119.0, 110.3, 30.0, 28.2, 22.8, 22.2. ³¹P NMR (202 MHz, CDCl₃) δ -17.78. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₅H₂₂NO₄P 432.1359; Found 432.1360.

2-(Naphthalen-1-yl)cyclohex-1-en-1-yl diphenyl phosphate (7ah). Prepared according to GP1 starting from phosphate 6a (207.7 mg, 0.51 mmol), 1-naphthylzinc chloride (1.4 mL, 0.62 mmol, 0.44 M), Pd(OAc)₂ (4.6 mg) and XPhos (19.4 mg), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 212.1 mg (92%), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.81 (m, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.50–7.44 (m, 2H), 7.44-7.35 (m, 1H), 7.35-7.29 (m, 1H), 7.13-6.98 (m, 6H), 6.76-6.68 (m, 2H), 6.68-6.62 (m, 2H), 2.71-2.59 (m, 2H), 2.50-2.35 (m, 2H), 2.01-1.91 (m, 2H), 1.87-1.79 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.2 (d, *J* = 7.6 Hz), 143.9 (d, J = 8.0 Hz), 137.0 (d, J = 1.4 Hz), 133.7, 131.0, 129.4, 128.3, 127.3, 126.0 (d, J = 1.1 Hz), 126.0, 125.7, 125.6, 125.5, 125.0, 123.0 (d, J = 8.8 Hz), 119.7 (d, J = 9.7 Hz), 119.7, 31.5, 28.0, 23.3, 22.5. ³¹P NMR (202 MHz, CDCl_3) δ -17.89. HRMS (APCl) m/z: [M+H]^ Calcd for $C_{28}H_{25}O_4P$ 457.1563; Found 457.1564.

2-(6-Methoxynaphthalen-2-yl)cyclohex-1-en-1-yl diphenyl phosphate (7ai). Prepared according to GP1 starting from phosphate **6a** (194.1 mg, 0.47 mmol), 6methoxynaphthalen-2-ylzinc chloride (2.85 mL, 0.57 mmol, 0.2 M), Pd(OAc)₂ (4.3 mg) and XPhos (18.1 mg), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 187.4 mg (81%), white solid, mp = 106.0–108.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.56 (m, 3H), 7.35 (dd, J = 8.5 Hz, 1.5 Hz, 1H), 7.12-7.00 (m, 8H), 6.90-6.86 (m, 4H), 3.93 (s, 3H), 2.60-2.54 (m, 2H), 2.48-2.42 (m, 2H), 1.88-1.82 (m, 2H), 1.79–1.72 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.6, 150.4 (d, J = 12.7 Hz), 143.0 (d, J = 8.3 Hz), 134.2, 133.5, 129.6, 129.5, 128.8, 127.4, 126.9, 126.4, 125.0, 124.1 (d, J = 8.9 Hz), 129.9 (d, J = 4.9 Hz), 118.6, 105.6, 55.4, 30.8, 28.3, 23.1, 22.5. ^{31}P NMR (202 MHz, CDCl3) δ -17.51. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₉H₂₇O₅P 487.1669; Found 487.1670.

2-(2-Furyl)cyclohex-1-en-1-yl diphenyl phosphate (7aj). Prepared according to GP1 starting from phosphate 6a (206.0 mg, 0.50 mmol), 2-furylzinc chloride (1.75 mL, 0.61 mmol, 0.35 M), Pd(OAc)₂ (4.5 mg) and XPhos (19.2 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 138.0 mg (69%), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.26 (m, 5H), 7.25–7.15 (m, 6H), 6.50 (d, *J* = 3.4 Hz, 1H), 6.31 (dd, *J* = 3.3, 1.9 Hz, 1H), 2.66–2.55 (m, 2H), 2.55–2.46 (m, 2H), 1.80–1.73 (m, 2H), 1.71–1.63 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5 (d, *J* = 7.3 Hz), 142.7 (d, *J* = 8.5 Hz), 140.7, 129.7 (d, *J* = 0.6 Hz), 125.4, 120.1, 120.1, 113.9 (d, *J* = 9.1 Hz), 111.2, 109.1, 28.5, 25.4, 22.7, 21.7. ³¹P NMR (202 MHz, CDCl₃) δ -17.69., HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₂H₂₁O₅P 397.1199; Found 397.1200.

(2-(2-Thienyl)cyclohex-1-en-1-yl) diphenyl phosphate (**7ak**).Prepared according to GP1 starting from phosphate **6a** (199.1 mg, 0.49 mmol), 2-thienylzinc chloride (0.94 mL, 0.58 mmol, 0.62 M), Pd(OAc)₂ (4.4 mg) and XPhos (18.6 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 186.1 mg (93%), brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.27 (m, 4H), 7.25–7.13 (m, 7H), 7.10 (d, *J* = 3.7 Hz, 1H), 6.95 (dd, *J* = 5.1, 3.8 Hz, 1H), 2.70–2.63 (m, 2H), 2.60–2.51 (m, 2H), 1.81– 1.71 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.6 (d, *J* = 7.2 Hz), 143.0 (d, *J* = 7.9 Hz), 139.6, 129.7, 126.2, 125.4, 125.1, 124.9, 120.2 (d, *J* = 5.2 Hz), 116.2 (d, *J* = 9.5 Hz), 28.9, 28.6, 22.8, 22.3. ³¹P NMR (202 MHz, CDCl₃) δ -17.77. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₁O₄PS 413.0971; Found 413.0971.

2-(Benzofuran-2-yl)cyclohex-1-en-1-yl diphenyl phosphate (**7a**l). Prepared according to GP1 starting from phosphate **6a** (187.2 mg, 0.46 mmol), 2-benzofuran-2-ylzinc chloride (1.85 mL, 0.56 mmol, 0.3 M), Pd(OAc)₂ (4.1 mg) and XPhos (17.4 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 149.2 mg (73%), off-white solid, mp = 63.0–64.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 1H), 7.37–7.27 (m, 5H), 7.26–7.20 (m, 5H), 7.20–7.13 (m, 3H), 6.76 (s, 1H), 2.69–2.60 (m, 4H), 1.85–1.77 (m, 2H), 1.77–1.69 (m,

2H). ${}^{13}C{}^{1H}$ NMR (101 MHz, CDCl₃) δ 153.7, 152.6 (d, *J* = 2.6 Hz), 150.5 (d, *J* = 7.3 Hz), 145.5 (d, *J* = 8.2 Hz), 129.8, 128.8, 125.4, 123.9, 122.5, 120.9, 120.1, 120.0, 113.9 (d, *J* = 9.0 Hz), 110.9, 105.6, 28.8, 25.6, 22.6, 21.7. ${}^{31}P$ NMR (202 MHz, CDCl₃) δ -18.03. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₆H₂₃O₅P 447.1356; Found 447.1353.

2-(2-Thianaphthenyl)cyclohex-1-en-1-yl diphenyl phosphate (7am). Prepared according to GP1 starting from phosphate 6a (197.7 mg, 0.48 mmol), 2thianaphthenylzinc chloride (2.1 mL, 0.59 mmol, 0.28 M), Pd(OAc)₂ (4.7 mg) and XPhos (19.9 mg), hexane:EtOAc (4:1, R_f = ≈0.3), yield 170.0 mg (76%), brown solid, mp = 57.6–69.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 7.3 Hz, 1H), 7.32–7.22 (m, 8H), 7.22– 7.17 (m, 4H), 7.14 (t, J = 7.5 Hz, 2H), 2.70 (s, 2H), 2.60 (s, 2H), 1.87-1.72 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) 150.5 (d, J = 7.3 Hz), 144.9 (d, J = 7.7 Hz), 139.9, 139.2, 129.7, 125.4, 124.0 (d, J = 5.2 Hz), 123.3, 121.9, 121.6, 120.1 (d, J = 5.0 Hz), 116.4 (d, J = 9.4 Hz), 29.0, 28.8, 22.7, 22.2. ³¹P NMR (202 MHz, CDCl₃) δ -17.98. HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{26}H_{23}O_4PS$ 463.1127; Found 463.1128.

2-(2,2'-Bithiophen-5-yl)cyclohex-1-en-1-yl diphenyl phosphate (7an). Prepared according to GP1 starting from phosphate 6a (219.2 mg, 0.54 mmol), 2,2'-bithiophen-5ylzinc chloride (2.0 mL, 0.66 mmol, 0.33 M), Pd(OAc)₂ (4.8 mg) and XPhos (20.4 mg), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 224.5 (85%), orange solid, mp = 65.7-71.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.27 (m, 4H), 7.25-7.22 (m, 4H), 7.19–7.14 (m, 3H), 7.03 (d, J = 3.0 Hz, 1H), 7.01–6.95 (m, 3H), 2.68 (s, 2H), 2.53 (s, 2H), 1.80-1.70 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.6 (d, *J* = 7.2 Hz), 143.3 (d, J = 7.5 Hz), 138.5, 137.6, 136.7, 129.8, 127.8, 125.6, 125.4, 124.2, 123.4, 123.0, 120.3 (d, J = 4.9 Hz), 120.1 (d, $J=5.0~{\rm Hz}),\,115.9$ (d, $J=9.5~{\rm Hz}),\,28.6,\,28.5,\,22.8,\,22.2.~^{31}{\rm P}$ NMR (202 MHz, CDCl₃) δ -17.92. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₃O₄PS₂ 495.0848; Found 495.0850.

2-Methylcyclohex-1-en-1-yl diphenyl phosphate (7ao). Prepared according to GP1 starting from phosphate **6a** (217.6 mg, 0.53 mmol), methylzinc chloride (1.45 mL, 0.64 mmol, 0.44 M), Pd(OAc)₂ (4.8 mg) and XPhos (20.3 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 134.8 mg (74%), colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.8 Hz, 4H), 7.25 (d, *J* = 8.1 Hz, 4H), 7.18 (t, *J* = 7.3 Hz, 2H), 2.31 (s, 2H), 2.00 (s, 2H), 1.72–1.65 (m, 2H), 1.58 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.7 (d, *J* = 7.4 Hz), 141.6 (d, *J* = 9.1 Hz), 129.8, 125.3, 120.1 (d, *J* = 4.9 Hz), 119.7 (d, *J* = 7.6 Hz), 30.4, 27.9, 23.4, 22.2, 16.2. ³¹P NMR (202 MHz, CDCl₃) δ -16.52. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁O₄P 345.1250; Found 345.1253.

Diphenyl 2-[(trimethylsilyl)methyl]cyclohex-1-en-1-yl phosphate (7ap). Prepared according to GP1 starting from phosphate 6a (189.9 mg, 0.46 mmol), trimethylsilylmethylzinc chloride (0.82 mL, 0.57 mmol, 0.69 M), Pd(OAc)₂ (4.2 mg) and XPhos (17.7 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 142.6 mg (74%), yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.7 Hz, 4H), 7.25 (d, *J* = 7.7 Hz, 4H), 7.18 (t, *J* = 7.3 Hz, 2H), 2.38 (s, 2H), 1.98 (s, 2H), 1.73–1.63 (m, 2H), 1.59–1.50 (m, 2H), 1.47 (s, 2H), -0.04 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.7 (d, *J* = 7.4 Hz), 139.5 (d, *J* = 8.5 Hz), 129.7, 125.2, 121.4 (d, *J* = 8.7 Hz), 120.2 (d, *J* = 5.0 Hz), 30.9, 27.8, 23.5, 22.4, 20.9 (d, *J* = 1.4 Hz), -0.8. ³¹P NMR (202 MHz, CDCl₃) δ -16.60. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₉O₄PSi 439.1465; Found 439.1468.

2-Butylcyclohex-1-en-1-yl diphenyl phosphate (7aq). Prepared according to GP1 starting from phosphate 6a (207.9 mg, 0.51 mmol), n-butylzinc chloride (1.3 mL, 0.61 mmol, 0.47 M), Pd(OAc)₂ (4.7 mg) and XPhos (19.4 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 79.9 mg (41%), yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.7 Hz, 4H), 7.32–7.27 (m, 4H), 7.23 (t, *J* = 7.4 Hz, 2H), 2.40 (s, 2H), 2.10–1.98 (m, 4H), 1.78–1.68 (m, 2H), 1.64–1.56 (m, 2H), 1.38–1.27 (m, 2H), 1.27–1.16 (m, 2H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.7 (d, *J* = 7.4 Hz), 141.5 (d, *J* = 8.8 Hz), 129.7, 125.3, 123.7 (d, *J* = 8.4 Hz), 120.2 (d, *J* = 4.9 Hz), 29.9, 29.6, 28.04, 27.97, 23.3, 22.7, 22.3, 14.0. ³¹P NMR (202 MHz, CDCl₃) δ -16.79. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇O₄P 387.1720; Found 387.1721.

2-(3,4-Dihydronaphthalen-1-yl)cyclohex-1-en-1-yl

diphenyl phosphate (7ar). Prepared according to GP1 starting from phosphate **6a** (221.8 mg, 0.54 mmol), 3,4dihydronaphth-1-ylzinc chloride (1.9 mL, 0.67 mmol, 0.35 M), Pd(OAc)₂ (4.9 mg) and XPhos (20.6 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 232.2 mg (93%), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.15 (m, 6H), 7.15–7.07 (m, 4H), 7.02 (d, *J* = 8.1 Hz, 4H), 5.93 (t, *J* = 4.5 Hz, 1H), 2.68 (s, 2H), 2.57–2.48 (m, 2H), 2.30–2.07 (m, 4H), 1.85 (p, *J* = 6.2 Hz, 2H), 1.77–1.64 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5 (d, *J* = 7.7 Hz), 143.5 (d, *J* = 8.4 Hz), 136.2, 135.7 (d, *J* = 1.6 Hz), 133.6 (d, *J* = 1.0 Hz), 129.6, 127.6, 127.4 (d, *J* = 1.4 Hz), 126.8, 126.5, 125.1, 124.2, 123.2 (d, *J* = 8.5 Hz), 120.0 (d, *J* = 4.9 Hz), 30.0, 28.1, 27.8, 23.2, 23.0, 22.3. ³¹P NMR (202 MHz, CDCl₃) δ -17.53. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₈H₂₇O₄P 459.1720; Found 459.1706.

2-(4-Methoxyphenyl)cyclobut-1-en-1-yl diphenyl phosphate (**7ca**). Prepared according to GP1 starting from phosphate (**7ca**). Prepared according to GP1 starting from phosphate **6c** (205.4 mg, 0.54 mmol), 4-methoxyphenylzinc chloride (1.5 mL, 0.68 mmol, 0.45 M), Pd(OAc)₂ (4.8 mg) and XPhos (20.5 mg), hexane:EtOAc (4:1, R_f = \approx 0.3), yield 191.8 mg (87%), off-white solid, mp = 79–81 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (t, *J* = 7.7 Hz, 4H), 7.34–7.29 (m, 6H), 7.26 (t, *J* = 7.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 3.85 (s, 3H), 2.99 (s, 2H), 2.44 (s, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.8, 150.4 (d, *J* = 7.3 Hz), 131.7 (d, *J* = 8.7 Hz), 129.9, 127.6, 125.7, 125.4, 122.2 (d, *J* = 11.3 Hz), 120.2 (d, *J* = 5.0 Hz), 113.8, 55.3, 31.2, 21.0. ³¹P NMR (202 MHz, CDCl₃) δ -17.49. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₃H₂₁O₅P 409.1199; Found 409.1180.

2-(4-Methoxyphenyl)cyclopent-1-en-1-yl diphenyl phosphate (**7da**). Prepared according to GP1 starting from

58

59

60

6d (300.9 0.76 phosphate mg, mmol). 4methoxyphenylzinc chloride (2.1 mL, 0.95 mmol, 0.45 M), Pd(OAc)₂ (6.8 mg) and XPhos (28.9 mg), hexane:EtOAc (4:1, R_f = ≈0.3), yield 224.4 mg (70%), off-white solid, mp = 75.6–77.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.6 Hz, 2H), 7.32 (t, J = 7.7 Hz, 4H), 7.27–7.16 (m, 6H), 6.75 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 2.89 (t, J = 7.5 Hz, 2H), 2.75-2.65 (m, 2H), 1.99 (p, J = 7.6 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.4, 150.5 (d, J = 7.4 Hz), 142.7 (d, J = 7.5 Hz), 129.8, 128.4, 126.8, 125.5, 120.9 (d, J = 9.5 Hz), 120.2 (d, J = 4.9 Hz), 113.5, 55.2, 32.9, 31.3, 19.3. ³¹P NMR (202 MHz, CDCl₃) δ -17.39. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₃O₅P 423.1356; Found 423.1333.

2-(4-Methoxyphenyl)cyclohept-1-en-1-yl diphenvl phosphate (7ea). Prepared according to GP1 starting from phosphate 6e (182.8 mg, 0.43 mmol), 4methoxyphenylzinc chloride (1.2 mL, 0.54 mmol, 0.45 M), Pd(OAc)₂ (3.9 mg) and XPhos (16.5 mg), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 102.3 mg (53%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 4H), 7.17-7.10 (m, 4H), 7.00-6.94 (m, 4H), 6.75-6.68 (m, 2H), 3.76 (s, 3H), 2.74-2.65 (m, 2H), 2.48-2.40 (m, 2H), 1.82-1.65 (m, 7H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.1, 150.5 (d, J = 7.4 Hz), 146.7 (d, J = 9.4 Hz), 133.0 (d, J = 2.0 Hz), 129.6 (d, J = 0.5 Hz), 129.3, 129.3, 129.0 (d, J = 8.7 Hz), 125.0, 119.9 (d, J = 5.1 Hz), 113.3, 55.2, 33.7, 33.3, 31.4, 26.4, 24.9. ³¹P NMR (202 MHz, CDCl₃) δ -17.53. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇O₅P 451.1669; Found 451.1647.

2-(4-Methoxyphenyl)cyclooct-1-en-1-yl diphenyl phosphate (**7fa**).

Prepared according to GP1 starting from phosphate **6f** (356.7 mg, 0.82 mmol), 4-methoxyphenylzinc chloride (2.2 mL, 0.99 mmol, 0.45 M), Pd(OAc)₂ (7.3 mg) and XPhos (31.1 mg), hexane:EtOAc (4:1, $R_f = \approx 0.3$), yield 137.3 mg (36%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.20 (m, 4H), 7.16 (d, *J* = 8.8 Hz, 2H), 7.14–7.09 (m, 2H), 6.98–6.93 (m, 4H), 6.74 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 2.70–2.62 (m, 2H), 2.48–2.38 (m, 2H), 1.81–1.70 (m, 2H), 1.65–1.52 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.2, 150.5 (d, *J* = 7.5 Hz), 143.9 (d, *J* = 8.7 Hz), 131.4, 129.8 (d, *J* = 1.3 Hz), 129.5, 126.3 (d, *J* = 8.3 Hz), 125.0 (d, *J* = 1.1 Hz), 119.9 (d, *J* = 5.1 Hz), 113.4, 55.1, 32.8, 30.4, 28.9 (d, *J* = 2.5 Hz), 28.6 (d, *J* = 1.4 Hz), 26.6, 26.2.³¹P NMR (202 MHz, CDCl₃) δ -17.51. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₇H₂₉O₅P 465.1825; Found 465.1809.

Diphenyl (1,2,2-triphenylvinyl) phosphate (**7gs**). Prepared according to GP1 starting from phosphate **6g** (1.06 g, 2.09 mmol), phenylzinc chloride (5.0 mL, 2.50 mmol, 0.5 M), Pd(OAc)₂ (19.0 mg) and XPhos (80.0 mg) in THF (3mL), hexane:EtOAc (4:1, R_f = ≈0.3), yield 0.836 g (79%), yellow solid, mp = 109.5–110.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 6.8 Hz, 2H), 7.38 (d, J = 7.0 Hz, 2H), 7.28–7.12 (m, 11H), 7.12–7.06 (m, 5H), 7.04–6.99 (m, 2H), 6.81 (d, J = 8.5 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.5 (d, J = 7.4 Hz), 143.8 (d, J = 8.8 Hz), 139.6, 139.2, 134.6, 131.2 (d, J = 8.8 Hz), 130.7, 130.5, 129.9, 129.5, 128.7, 128.2, 128.0, 127.9, 127.4, 127.0, 125.1, 120.0 (d, J = 5.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -16.89. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₃₂H₂₅O₄P 505.1563; Found 505.1544.

(Z)-1-(4-methoxyphenyl)-1-phenylhex-1-en-2-yl diphenyl phosphate (**7ht**). Prepared according to GP1 starting from phosphate 6h (0.763 g, 1.57 mmol), 4-methoxyphenylzinc chloride (4.33 mL, 1.90 mmol, 0.44 M), Pd(OAc)₂ (14.0 mg) and XPhos (80.0 mg), hexane:EtOAc (6:1, $R_f = \approx 0.3$), yield 0.664 g (82%), yellow solid, mp. = 70-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.22 (m, 7H), 7.20–7.10 (m, 6H), 7.04–6.97 (m, 4H), 6.67 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H), 2.51-2.43 (m, 2H), 1.58-1.49 (m, 2H), 1.25-1.16 (m, 2H), 0.76 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.4, 150.6 (d, J = 7.3 Hz), 146.1 (d, J = 9.1 Hz), 140.2, 131.2 (d, J = 2.0 Hz), 131.0, 129.8 (d, J = 1.4 Hz), 129.6, 128.2, 127.1, 125.0, 119.9 (d, J = 5.1 Hz), 113.2, 55.1, 31.7, 29.3, 21.9, 13.7. ³¹P NMR (202 MHz, CDCl₃) δ -17.94. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₃₁H₃₁O₅P 515.1982; Found 515.1980.

General procedure for the Negishi reaction of bromovinyl phosphates **7** (GP2)

A solution of AlCl₃ (1 equiv, 0.5M solution in THF) was added to a mixture of phosphate **7**, Pd(OAc)₂ (4 mol %) and dppp (4 mol %) at 23 °C. The resultant mixture was stirred at 23 °C for 2 minutes and then a solution of organozinc chloride (2.0 equiv) was added and the reaction mixture was stirred at 23 °C for 12 hours. Then the mixture was quenched by tartaric acid (10 mL, 1M solution in water). The water layer was extracted with diethyl ether (3x15 mL), the organic layer was dried over MgSO₄ and the solvents were removed under reduce pressure. The product was isolated by column chromatography.

General procedure for one-pot two step synthesis of 1,2disubstituted cyclohexenes (GP3)

Organozinc chloride (1.2 equiv) was added to a solution of phosphate 6a, Pd(OAc)₂ (4 mol %) and XPhos (8 mol %) in THF (1 mL). The resultant mixture was stirred at 23 °C for 12 h, afterthat the residual organozinc chloride was quenched by addition of a solution of pivalic acid (0.2 equiv) in dry THF (1 mL). Then the crude reaction mixture was stirred at 23 °C for 5 min, followed by addition of Pd(OAc)₂ (4 mol%) and dppp (4 mol%). The solution was stirred at 23 °C for 5 min and organozinc chloride (2 equiv) and AlCl₃ (1.2 equiv, 0.5M solution of in THF) were added and the reaction mixture was stirred at 23 °C for 12 h. Then the mixture was quenched by tartaric acid (10 mL, 1M solution in water). The water layer was extracted with diethyl ether (3x15 mL), the organic layer was dried over MgSO₄ and the solvents were removed under reduce pressure. The product was isolated by column chromatography.

4-Methoxy-4"-methyl-3',4',5',6'-tetrahydro-1,1':2',1"terphenyl (**8b**). It was prepared according to GP2 starting from phosphate **7aa** (205.2 mg, 0.47 mmol), 4-tolylzinc

chloride (1.9 mL, 0.95 mmol, 0.5 M), Pd(OAc)₂ (4.2 mg), dppp (7.8 mg) and AlCl₃ (0.94 mL, 0.47 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 112.0 mg (86%), white solid, mp = 52.0-55.4 °C. The title compound was also prepared following GP3 starting from phosphate 6a (496.3 mg, 1.21 mmol), 4-methoxyphenylzinc chloride (3 mL, 1.50 mmol, 0.5 M), Pd(OAc)₂ (10.9 mg), XPhos (46.3 mg), PivOH (25 mg), Pd(OAc)₂ (10.9 mg), dppp (20.0 mg), 4-tolylzinc chloride (4.9 mL, 2.45 mmol, 0.5 M) and AlCl₃ (2.9 mL), 273.6 mg (81%).¹H NMR (500 MHz, CDCl₃) δ 6.95-6.85 (m, 6H), 6.65 (d, J = 8.5 Hz, 2H), 3.73 (s, 3H), 2.43 (s, 4H), 2.24 (s, 3H), 1.82 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.4, 141.1, 136.5, 135.0, 134.3, 134.0, 130.1, 128.9, 128.4 113.0, 55.1, 32.1, 23.4, 21.1. HRMS (EI) m/z: $[M]^+$ Calcd for C₂₀H₂₂O 278.1671; Found 278.1662.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

4-Chloro-4"-methoxy-3',4',5',6'-tetrahydro-1,1':2',1"-

terphenyl (8c). Prepared according to GP2 starting from phosphate **7aa** (202.4 mg, 0.46 mmol), 4-chlorophenylzinc chloride (1.93 mL, 0.93 mmol, 0.48 M), Pd(OAc)₂ (4.2 mg), dppp (7.6 mg) and AlCl₃ (0.93 mL, 0.46 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 116.3 mg (84%), light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H), 2.41 (s, 4H), 1.82 (s, 4H). ¹³Cl¹H} NMR (101 MHz, CDCl₃) δ 157.6, 142.5, 135.8, 135.2, 133.2, 131.2, 130.4, 130.0, 127.8, 113.1, 55.1, 32.0, 31.8, 23.2. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉ClO 299.1197; Found 299.1182.

4-Fluoro-4"-methoxy-3',4',5',6'-tetrahydro-1,1':2',1"-

terphenyl (8d). Prepared according to GP2 starting from phosphate **7aa** (210.9 mg, 0.48 mmol), 4-fluorophenylzinc chloride (2.2 mL, 0.97 mmol, 0.44 M), Pd(OAc)₂ (4.3 mg), dppp (8.0 mg) and AlCl₃ (0.97 mL, 0.48 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 116.2 mg (85%), white solid, mp = 74.1–75.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.93 (dd, *J* = 8.4, 5.7 Hz, 2H), 6.88 (d, *J* = 8.3 Hz, 2H), 6.79 (t, *J* = 8.6 Hz, 2H), 6.65 (d, *J* = 8.3 Hz, 2H), 3.73 (s, 3H), 2.41 (s, 4H), 1.82 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.9 (d, *J* = 244.4 Hz), 157.6, 140.0 (*J* = 3.8 Hz), 136.0, 134.8, 133.4, 130.5 (d, *J* = 7.6 Hz), 130.0, 114.5 (*J* = 21.4 Hz), 113.1, 55.1, 32.1, 32.0, 23.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.59. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉FO 283.1493; Found 283.1476.

4-Methoxy-3',4',5',6'-tetrahydro-1,1':2',1":4",1"'-

quaterphenyl (8e). Prepared according to GP2 starting from phosphate **7aa** (195.8 mg, 0.45 mmol), 4biphenylzinc chloride (2.4 mL, 0.91 mmol, 0.38 M), Pd(OAc)₂ (4.0 mg), dppp (7.4 mg) and AlCl₃ (0.90 mL, 0.45 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 140.9 mg (92%), white solid, mp = 88.8–93.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 7.0 Hz, 2H), 7.44–7.31 (m, 4H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 3.72 (s, 3H), 2.53–2.42 (m, 4H), 1.85 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.6, 143.2, 140.9, 138.1, 136.2, 134.7, 133.9, 130.1, 129.5, 128.7, 127.0, 126.9, 126.3, 113.1, 55.1, 32.2, 31.9, 23.4. HRMS (APCI) m/z: $[M\!+\!H]^+$ Calcd for $C_{25}H_{24}O$ 341.1900; Found 341.1887.

4"-Methoxy-3',4',5',6'-tetrahydro-[1,1':2',1"-terphenyl]-

4-carbonitrile (8f). Prepared according to GP2 starting from phosphate **7aa** (204.6 mg, 0.47 mmol), 4-cyanophenylzinc chloride (4.8 mL, 0.96 mmol, 0.2 M), Pd(OAc)₂ (4.2 mg), dppp (7.7 mg) and AlCl₃ (0.94 mL, 0.47 mmol), hexane:EtOAc (20:1, $R_f = \approx 0.1$), yield 121.1 mg (89%), yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.7 Hz, 2H), 7.07 (d, J = 7.6 Hz, 2H), 6.85 (d, J = 7.9 Hz, 2H), 6.65 (d, J = 8.0 Hz, 2H), 3.73 (s, 3H), 2.61–2.29 (m, 4H), 1.83 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.0, 149.3, 137.1, 135.2, 133.0, 131.6, 130.0, 129.9, 119.3, 113.3, 109.1, 55.1, 32.1, 31.4, 23.1. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉NO 290.1539; Found 290.1522.

4"-Methoxy-N,N-dimethyl-3',4',5',6'-tetrahydro-

[1,1':2',1"-terphenyl]-4-amine (**8g**). Prepared according to GP2 starting from phosphate **7aa** (191.4 mg, 0.44 mmol), 4-*N*,*N*-dimethylaminophenylzinc chloride (2 mL, 0.88 mmol, 0.44 M), Pd(OAc)₂ (3.9 mg), dppp (7.2 mg) and AlCl₃ (0.88 mL, 0.44 mmol). hexane:EtOAc (20:1, R_f = \approx 0.2), yield 79.1 mg (59%), yellow solid, mp = 62.5–65.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 6.51 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H), 2.87 (s, 6H), 2.42 (s, 4H), 1.80 (s, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.2, 148.4, 136.9, 133.9, 132.7, 132.2, 130.1, 129.7, 113.0, 111.9, 55.1, 40.6, 32.1, 31.9, 23.5. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₅NO 308.2009; Found 308.1998.

2-(4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)furan (8h). Prepared according to GP2 starting from phosphate **7aa** (210.0 mg, 0.48 mmol), 2-furylzinc chloride (2.75 mL, 0.96 mmol, 0.35 M), Pd(OAc)₂ (4.3 mg), dppp (7.9 mg) and AlCl₃ (0.96 mL, 0.48 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 89.4 mg (73%), white solid. mp = 50.4–51.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (s, 1H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.18–6.12 (m, 1H), 5.45 (d, *J* = 3.2 Hz, 1H), 3.81 (s, 3H), 2.52 (s, 2H), 2.38 (s, 2H), 1.78 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.3, 155.2, 140.0, 137.1, 136.0, 129.1, 123.9, 113.8, 110.6, 107.3, 55.2, 33.5, 27.3, 23.1, 22.6. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₁₈O₂ 255.1380; Found 255.1368.

2-(4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)thiophene (8i). Prepared according to GP2 starting from phosphate **7aa** (200.1 mg, 0.46 mmol), 2-thienylzinc chloride (1.5 mL, 0.93 mmol, 0.62 M), Pd(OAc)₂ (4.1 mg), dppp (7.6 mg) and AlCl₃ (0.92 mL, 0.46 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 99.0 mg (80%), white solid, mp = 61.0–64.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.85 (d, *J* = 8.5 Hz, 2H), 6.81–6.78 (m, 1H), 6.68 (d, *J* = 3 Hz, 1H), 3.81 (s, 3H), 2.59–2.53 (m, 2H), 2.44–2.38 (m, 2H), 1.87–1.76 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.6, 145.7, 136.5, 136.3, 130.0, 126.7, 125.9, 124.8, 124.1, 114.0, 55.2, 33.9, 31.3, 23.2, 23.0. HRMS (APCI)

60

m/z: $[M+H]^+$ Calcd for $C_{17}H_{18}OS$ 271.1151; Found 271.1142.

2-(4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)benzofuran (8j). Prepared according to GP2 starting from phosphate 7aa (195.3 mg, 0.45 mmol), 2-benzofurylzinc chloride (3 mL, 0.90 mmol, 0.3 M), Pd(OAc)₂ (4.0 mg), dppp (7.4 mg) and AlCl₃ (0.89 mL, 0.45 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 84.0 mg (62%), white solid, mp = 72.0–76.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.11–7.06 (m, 3H), 6.84 (d, J = 8.6 Hz, 2H), 5.86 (s, 1H), 3.82 (s, 3H), 2.62 (s, 2H), 2.45 (s, 2H), 1.88–1.77 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.5, 157.4, 153.6, 139.6, 136.6, 129.1, 128.9, 124.0, 123.3, 122.3, 120.5, 113.8, 110.7, 104.0, 55.3, 33.7, 27.6, 23.0, 22.6. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₀O₂ 305.1536; Found 305.1530.

2-(4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)thianaphthene (**8k**). Prepared according to GP2 starting from phosphate **7aa** (204.0 mg, 0.47 mmol), 2benzothiophenylzinc chloride (3.4 mL, 0.95 mmol, 0.28 M), Pd(OAc)₂ (4.2 mg), dppp (7.7 mg) and AlCl₃ (0.93 mL, 0.47 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 116.3 mg (78%), white solid. mp = 88.2–91.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 12.1, 7.9 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.95 (s, 1H), 6.82 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 2.61 (s, 2H), 2.44 (s, 2H), 1.90–1.75 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.8, 146.0, 139.8, 139.4, 138.6, 135.8, 130.1, 127.1, 123.8, 123.6, 123.0, 121.8, 121.4, 113.9, 55.2, 34.0, 31.3, 23.2, 23.0. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₂₁H₂₀OS 321.1308; Found 321.1295.

6-"Butyl-4'-methoxy-2,3,4,5-tetrahydro-1,1'-biphenyl (81). Prepared according to GP2 starting from phosphate 7aa (197.5 mg, 0.45 mmol), *n*-butylzinc chloride (1.93 mL, 0.91 mmol, 0.47 M), Pd(OAc)₂ (4.1 mg), dppp (7.5 mg) and AlCl₃ (0.91 mL, 0.46 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = \approx 0.4), yield 100.8 mg (91%), colorless oil. The title compound was also prepared according to GP3 starting from 6a (153.2 mg, 0.37 phosphate mmol), 4methoxyphenylzinc chloride (1.01 mL, 0.48 mmol, 0.48 M), Pd(OAc)₂ (3.4 mg), XPhos (14.3 mg), PivOH (7.6 mg), Pd(OAc)₂ (3.4 mg), dppp (6.2 mg), *n*-butylzinc chloride (1.6 mL, 0.75 mmol, 0.47 M) and AlCl₃ (0.75 mL, 0.38 mmol), 100.8 mg (91%). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, J = 7.7 Hz, 4H), 7.32–7.27 (m, 4H), 7.23 (t, J = 7.4 Hz, 2H), 2.40 (s, 2H), 2.10-1.98 (m, 4H), 1.78-1.68 (m, 2H), 1.64-1.56 (m, 2H), 1.38–1.27 (m, 2H), 1.27–1.16 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.7, 137.2, 133.3, 132.2, 129.4, 113.3, 55.2, 34.0, 32.7, 30.7, 28.8, 23.7, 23.2, 22.7, 14.1. HRMS (APCI) m/z: [M+H]+ Calcd for C₁₇H₂₄O 245.1900; Found 245.1891.

2-Methoxy-6-(4'-methoxy-3,4,5,6-tetrahydro-[1,1'biphenyl]-2-yl)naphthalene (8m). Prepared according to GP2 starting from phosphate 7aa (202.6 mg, 0.46 mmol), 6-methoxy-2-naphthylzinc chloride (4.65 mL, 0.93 mmol,

0.2 M), Pd(OAc)₂ (4.2 mg), dppp (7.6 mg) and AlCl₃ (0.93 mL, 0.46 mmol), hexane:DCM (9:1 \rightarrow 2:1, R_f = \approx 0.3), yield 159.9 mg (100%), yellow solid, mp = 71.9–75.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 9.0 Hz, 1H), 7.47 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.09–7.00 (m, 3H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.61 (d, *J* = 8.3 Hz, 2H), 3.88 (s, 3H), 3.68 (s, 3H), 2.54 (s, 2H), 2.48 (s, 2H), 1.86 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.5, 157.3, 139.6, 136.3, 134.5, 134.2, 132.8, 130.2, 129.3, 128.9, 128.8, 127.0, 125.3, 118.3, 113.1, 105.5, 55.3, 55.1, 32.19, 32.15, 23.5, 23.4. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄O₂ 345.1849; Found 345.1837.

1-(4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)naphthalene (8n). Prepared according to modified GP2 starting from phosphate 7aa (208.1 mg, 0.48 mmol), 1naphthylzinc chloride (2.2 mL, 0.97 mmol, 0.44 M), Pd(OAc)₂ (4.3 mg), DPEPhos (10.3 mg), AlCl₃ (0.95 mL, 0.48 mmol) and the reaction mixture was placed in an oil bath at 45 °C and stirred for 12 h, hexane:DCM (9:1 \rightarrow 4:1, R_f = ≈0.4), yield 149.9 mg (100%), yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.45–7.37 (m, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 2H), 6.46 (d, J = 8.5 Hz, 2H), 3.59 (s, 3H), 2.61-2.48 (m, 3H), 2.40-2.28 (m, 1H), 2.03-1.83 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.4, 142.4, 136.0, 135.8, 133.7, 133.6, 131.6, 128.8, 128.3, 126.5, 126.2, 125.9, 125.52, 125.50, 125.3, 54.9, 33.1, 31.8, 23.6, 23.3. HRMS (APCI) m/z: $[M+H]^+$ Calcd for C₂₃H₂₂O 315.1743; Found 315.1733.

4-Methoxy-2"-methyl-3',4',5',6'-tetrahydro-1,1':2',1"-

terphenyl (**8o**). Prepared according to modified GP2 starting from phosphate **7aa** (203.1 mg, 0.47 mmol), 2-tolylzinc chloride (2.4 mL, 0.96 mmol, 0.4 M), Pd(OAc)₂ (4.2 mg), DPEPhos (10.0 mg) and AlCl₃ (0.93 mL, 0.47 mmol) and the reaction mixture was placed in an oil bath at 45 °C and stirred for 12 h, hexane:DCM (4:1, $R_f = 0.4$), yield 125.0 mg (96%), white solid, mp = 37.8–38.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.06–6.95 (m, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 3.69 (s, 3H), 2.59–2.47 (m, 1H), 2.41–2.20 (m, 3H), 2.05 (s, 3H), 1.90–1.76 (m, 4H).¹³C{¹H}NMR (101 MHz, CDCl₃) δ 157.4, 143.7, 135.9, 134.9, 134.3, 134.0, 129.7, 129.4, 129.2, 126.0, 125.2, 112.7, 55.0, 32.4, 31.3, 23.5, 23.2, 19.5. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₂O 279.1743; Found 279.1755.

1-Methoxy-4-(2-(4-tolyl)cyclobut-1-en-1-yl)benzene (**8p**). Prepared according to GP2 starting from phosphate **7ca** (181.3 mg, 0.44 mmol), 4-tolylzinc chloride (1.78 mL, 0.89 mmol, 0.5 M), Pd(OAc)₂ (4.0 mg), dppp (7.3 mg) and AlCl₃ (0.89 mL, 0.45 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = 0.4), yield 97.3 mg (88%), white solid, mp = 74.0–75.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.6 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.82 (s, 3H), 2.73 (s, 4H), 2.35 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.9, 137.4, 137.0, 136.7, 133.7, 129.3, 129.0, 127.4, 125.9, 113.7, 55.3, 26.8, 26.7, 21.4, in accordance with reference.^{19b}

1-Methoxy-4-(2-(4-tolyl)cyclopent-1-en-1-yl)benzene

(8q). Prepared according to GP2 starting from phosphate 7da (105.7 mg, 0.25 mmol), 4-tolylzinc chloride (1.0 mL, 0.50 mmol, 0.5 M), Pd(OAc)₂ (2.2 mg), dppp (4.1 mg) and AlCl₃ (0.50 mL, 0.25 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = 0.4), yield 65.1 mg (98%), white solid, mp = 50.0–54.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.75 (d, *J* = 8.1 Hz, 2H), 3.77 (s, 3H), 2.86 (t, *J* = 7.4 Hz, 4H), 2.30 (s, 3H), 2.01 (p, *J* = 7.4 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.2, 136.2, 136.2, 136.0, 135.8, 131.0, 129.3, 128.8, 128.0, 113.4, 55.2, 39.2, 39.0, 22.0, 21.2. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀O 265.1587; Found 265.1578.

1-(4-Methoxyphenyl)-2-(4-tolyl)cyclohept-1-ene (**8**r). It was prepared according to GP2 starting from phosphate **7ea** (28.0 mg, 0.062 mmol), 4-tolylzinc chloride (0.25 mL, 0.13 mmol, 0.5 M), Pd(OAc)₂ (0.6 mg), dppp (1.0 mg) and AlCl₃ (0.13 mL, 0.07 mmol), hexane:DCM (9:1 → 4:1, R_f = 0.4), yield 14.5 mg (80%), white solid, mp = 68.4–70.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.92–6.83 (m, 6H), 6.63 (d, *J* = 8.6 Hz, 2H), 3.72 (s, 3H), 2.70–2.59 (m, 4H), 2.23 (s, 3H), 1.89 (p, *J* = 5.8 Hz, 2H), 1.77–1.63 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.3, 142.4, 140.2, 140.0, 137.8, 134.7, 130.0, 128.9, 128.3, 113.0, 55.1, 36.9, 32.8, 26.7, 21.1. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₄O 293.1900; Found 293.1885.

1-(4-Methoxyphenyl)-2-(4-tolyl)cyclooct-1-ene (8s). Prepared according to GP2 starting from phosphate **7fa** (49.7 mg, 0.11 mmol), 4-tolylzinc chloride (0.43 mL, 0.22 mmol, 0.5 M), Pd(OAc)₂ (1.0 mg), dppp (1.8 mg) and AlCl₃ (0.21 mL, 0.11 mmol). hexane:DCM (9:1 → 4:1, R_f = 0.4), yield 6.0 mg (18%), colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.95–6.89 (m, 6H), 6.63 (d, *J* = 9.2 Hz, 2H), 3.72 (s, 3H), 2.67–2.58 (m, 4H), 2.22 (s, 3H), 1.81–1.57 (m, 8H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.3, 141.6, 137.3, 137.0, 136.9, 134.8, 130.1, 129.0, 128.3, 112.9, 55.0, 34.2, 34.1, 29.8, 29.7, 26.9, 26.8, 21.1. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₆O 307.2056; Found 307.2037.

2-(2-(6-Methoxynaphthalen-2-yl)cyclohex-1-en-1-

yl)thiophene (8t). Prepared according to GP3 starting from phosphate 6a (160.1 mg, 0.39 mmol), 2-thienylzinc chloride (0.76 mL, 0.47 mmol, 0.62 M), Pd(OAc)₂ (3.5 mg), XPhos (14.9 mg), PivOH (8.0 mg), Pd(OAc)₂ (3.5 mg), dppp (6.4 mg), 6-methoxy-2-naphthylzinc chloride (3.91 mL, 0.78 mmol, 0.2 M) and AlCl₃ (0.78 mL, 0.39 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = 0.4), 100.0 mg (80%), light yellow solid, mp = 99.5-101.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.67 (m, 2H), 7.63 (s, 1H), 7.24 (dd, J = 8.4, 1.5 Hz, 1H), 7.18-7.13 (m, 2H), 6.99-6.95 (m, 1H), 6.78-6.75 (m, 1H), 6.70 (d, J = 3.5 Hz, 1H), 3.96 (s, 3H), 2.69-2.61 (m, 2H), 2.58–2.50 (m, 2H), 1.98–1.83 (m, 4H).¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.6, 145.5, 139.5, 136.6, 133.5, 129.5, 129.2, 128.2, 127.3, 127.1, 126.8, 125.9, 125.1, 124.2, 118.6, 105.7, 55.3, 33.9, 31.4, 23.2, 23.1. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₀OS 321.1308; Found 321.1295.

4"-chloro-3',4',5',6'-tetrahydro-[1,1':2',1"-terphenyl]-4-ol (8u). Prepared according to modified GP3 starting from phosphate 6a (116.1 mg, 0.28 mmol), 4-chlorophenylzinc chloride (0.71 mL, 0.34 mmol, 0.48 M), Pd(OAc)₂ (2.5 mg), XPhos (10.8 mg), PivOH (5.7 mg), Pd(OAc)₂ (2.5 mg), dppp (4.6 mg), (4-((*tert*-butyldimethylsilyl)oxy)phenyl)zinc chloride (1.72 mL, 0.57 mmol, 0.33 M) and AlCl₃ (0.68 mL, 0.34 mmol) and the reaction mixture was stirred at 23 °C for 12 h Then the mixture was quenched by tartaric acid (10 mL, 1M solution in water). The water layer was extracted with diethyl ether (3x15 mL), the organic layer was dried over MgSO₄ and the solvents were removed under reduce pressure. The crude product was dissolved in THF (5 mL) and TBAF (0.3 mL, 1M in THF) was added. The resultant mixture was stirred for 1 h at 23 °C. Then the crude reaction mixture was diluted with ether (30 mL), the organic phase was washed with HCl (2 mL, 1M aqueous solution), water (1x10 mL) and brine (1x10 mL). The organic phase was dried over MgSO₄, concentrated under reduce pressure and the product was isolate by column chromatography, hexane:EtOAc (9:1 \rightarrow 6:1, R_f = 0.5), 67.9 mg (84%), colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 8.6 Hz, 2H), 4.48 (s, 1H), 2.40 (s, 4H), 1.81 (s, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.6, 142.5, 136.1, 135.2, 133.4, 131.3, 130.4, 130.2, 127.8, 114.7, 32.1, 31.8, 23.2. HRMS (APCI) m/z: [M-H]⁻ Calcd for C₁₈H₁₇ClO 283.0895; Found 283.0898.

6'-(thiophen-2-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4carbonitrile (8v). Prepared according to GP3 starting from phosphate 6a (108.5 mg, 0.27 mmol), 4-cyanophenylzinc chloride (1.33 mL, 0.32 mmol, 0.24 M), Pd(OAc)₂ (2.4 mg), XPhos (10.0 mg), PivOH (5.5 mg), Pd(OAc)₂ (2.4 mg), dppp (4.4 mg), 2-thienylzinc chloride (1.07 mL, 0.54 mmol, 0.5 M) and AlCl₃ (0.64 mL, 0.32 mmol), hexane:DCM (9:1 \rightarrow 2:1, R_f = 0.8), 40.0 mg (57%), white solid, mp = 120–124 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 7.05 (dd, J = 5.2, 1.2 Hz, 1H), 6.77 (dd, J = 5.1, 3.6 Hz, 1H), 6.56 (dd, J = 3.7, 1.2 Hz, 1H), 2.57– 2.50 (m, 2H), 2.43-2.33 (m, 2H), 1.87-1.76 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.3, 144.5, 135.1, 132.2, 129.8, 129.1, 126.3, 125.8, 124.6, 119.1, 110.2, 32.8, 31.9, 22.9, 22.7. HRMS (APCI) m/z: [M-H]⁻ Calcd for C₁₇H₁₅NS 264.0852; Found 264.0853.

1-methyl-2-(2-(thiophen-2-yl)cyclohex-1-en-1-yl)-1H-

indole (*8w*). Prepared according to GP3 starting from phosphate **6a** (105.7 mg, 0.26 mmol), 2-thienylzinc chloride (0,63 mL, 0.32 mmol, 0.5 M), Pd(OAc)₂ (2.3 mg), XPhos (9.9 mg), PivOH (5.3 mg), Pd(OAc)₂ (2.3 mg), dppp (4.2 mg), 2-(*N*-methylindol)zinc chloride (1.4 mL, 0.53 mmol, 0.38 M) and AlCl₃ (0.62 mL, 0.31 mmol), hexane:DCM (100:0 \rightarrow 9:1, R_f = 0.2), 62.9 mg (83%), white solid, mp = 79–82 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 1H), 7.29–7.26 (m, 1H), 7.22–7.16 (m, 1H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.99 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.77 (dd, *J* = 5.0, 3.8 Hz, 1H), 6.70 (d, *J* = 3.7 Hz, 1H), 6.38 (s, 1H), 3.36 (s, 3H), 2.69 (s, 2H), 2.43 (s, 2H), 1.91–1.79 (m, 4H). ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 144.3, 141.7, 137.1, 132.0, 128.4, 126.2, 126.1, 125.4, 124.7, 121.1, 120.5, 119.4, 109.6, 100.2, 34.0, 30.5, 29.7, 23.0, 22.8. HRMS (APCl) m/z: [M+H]⁺ Calcd for C₁₉H₁₉NS 294.1311; Found 294.1317.

2-(4'-methyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-

yl)thiophene (8x). Prepared according to GP3 starting from phosphate **6a** (126.6 mg, 0.31 mmol), 4-tolylzinc chloride (0.79 mL, 0.37 mmol, 0.47 M), Pd(OAc)₂ (2.8 mg), XPhos (11.8 mg), PivOH (6.3 mg), Pd(OAc)₂ (2.8 mg), dppp (5.1 mg), 2-thienylzinc chloride (1.25 mL, 0.63 mmol, 0.50 M) and AlCl₃ (0.74 mL, 0.37 mmol), hexane:DCM (100:0 \rightarrow 9:1, R_f = 0.5), 63.0 mg (80%), white solid, mp = 46–48 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.99 (dd, *J* = 5.2, 1.2 Hz, 1H), 6.77 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.65 (dd, *J* = 3.7, 1.2 Hz, 1H), 2.60– 2.50 (m, 2H), 2.43–2.37 (m, 3H), 2.34 (s, 3H), 1.86–1.75 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.6, 141.2, 136.7, 136.3, 129.2, 128.7, 126.6, 125.9, 124.8, 124.0, 33.8, 31.4, 23.2, 23.0, 21.3. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₁₈S 255.1202; Found 255.1204.

6'-(1-methyl-1H-indol-2-yl)-2',3',4',5'-tetrahydro-[1,1'biphenyl]-4-carbonitrile (8y). Prepared according to modified GP3 starting from phosphate 6a (137.1 mg, 0.34 mmol), 4-cyanophenylzinc chloride (1.68 mL, 0.40 mmol, 0.24 M), Pd(OAc)₂ (3.0 mg), XPhos (12.8 mg), PivOH (6.9 mg), Pd(OAc)₂ (3.0 mg), dppp (5.5 mg), 2-(Nmethylindol)zinc chloride (1.8 mL, 0.68 mmol, 0.38 M) and AlCl₃ (0.80 mL, 0.40 mmol), hexane:DCM (9:1 \rightarrow 2:1, $R_f = 0.5$), 39.5 mg (38%), white solid, mp = 122–124 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.14-7.09 (m, 4H), 7.08-7.04 (m, 1H), 6.27 (s, 1H), 3.22 (s, 3H), 2.57–2.51 (m, 2H), 2.50–2.44 (m, 2H), 1.95–1.83 (m, 4H). ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 147.8, 141.3, 137.5, 136.9, 131.7, 129.1, 128.6, 127.9, 121.2, 120.2, 119.6, 118.9, 109.9, 109.4, 101.0, 32.9, 30.9, 30.3, 23.0, 22.7. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₂ 313.1699; Found 313.1703.

2-(4-Methoxyphenyl)-1,1,2-triphenylethene (9a). Prepared according to GP2 starting from phosphate **7gs** (205.9 mg, 0.41 mmol), 4-methoxyphenylzinc chloride (1.71 mL, 0.82 mmol, 0.48 M), Pd(OAc)₂ (3.7 mg), dppp (6.7 mg) and AlCl₃ (0.82 mL, 0.41 mmol), hexane:DCM (9:1 → 4:1, R_f = 0.4), 72.0 mg (49%). ¹H NMR (500 MHz, CDCl₃) δ 7.14–7.06 (m, 9H), 7.06–6.99 (m, 6H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.63 (d, *J* = 8.7 Hz, 2H), 3.73 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.1, 144.1, 144.0, 140.6, 140.1, 136.1, 132.5, 131.4, 131.4, 131.4, 127.7, 127.6, 126.4, 126.3, 113.1, 55.1, in accordance with ref.²²

(Z)-1-methoxy-4-(1-phenyl-2-(p-tolyl)hex-1-en-1-

yl)benzene (**9b**). Prepared according to modified GP2 starting from phosphate **7ht** (87.7 mg, 0.17 mmol), 4tolylzinc chloride (0.73 mL, 0.37 mmol, 0.40 M), Pd(OAc)₂ (1.5 mg), DPEPhos (3.7 mg) and AlCl₃ (0.34 mL, 0.17 mmol), hexane:DCM (9:1 \rightarrow 4:1, R_f = 0.4), 22.0 mg (36%). ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.29 (m, 2H), 7.27–7.19 (m, 3H), 7.03–6.94 (m, 4H), 6.81–6.75 (m, 2H), 6.58–6.51 (m, 2H), 3.69 (s, 3H), 2.44–2.32 (m, 2H), 2.28 (s, 3H), 1.35–1.11 (m, 4H), 0.76 (t, *J* = 7.1 Hz, 3H), in accordance with ref.^{19e}

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge via the Internet at <u>http://pubs.acs.org</u>. Experimental procedures, characterizations of new compounds, NMR spectra data.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported from the grant of specific university research – grant No A2_FCHT_2020_023 and the Grant Agency of the Czech Republic (Grant No 18-12150S).

References

1. Selected recent reviews: (a) Biffis, A.; Centomo, P.; Del Zotto A.; Zecca, M., Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. *Chem. Rev.* **2018**, *118*, 2249–2295; (b) Cahiez, G.; Moyeux, A., Cobalt-Catalyzed Cross-Coupling Reactions. *Chem. Rev.* **2010**, *110*, 1435–1462. (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E., Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C–C Bonds. *Chem. Rev.* **2015**, *115*, 9587–9652.

2. Selected recent reviews: (a) Moselage, M.; Li J.; Ackermann, L., Cobalt-Catalyzed C–H Activation, *ACS Catalysis* **2016**, *6*, 498–525. (b) Ruiz-Castillo, P.; Buchwald, S. L., Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions, *Chem. Rev.* **2016**, *116*, 12564–12649. (c) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Wang, M.-M.; Dai, H.-X., Recent Progress on Copper-Mediated Directing-Group-Assisted C(sp2)–H Activation. *Synthesis* **2016**, *48*, 4381–4399. (d) Wang, C., Manganese-Mediated C–C Bond Formation via C–H Activation: From Stoichiometry to Catalysis. *Synlett* **2013**, *24*, 1606–1613.

3. Selected recent reviews: (a) Meng, G.; Shi, S.; Szostak, M., Cross-Coupling of Amides by N–C Bond Activation. *Synlett* **2016**, *27*, 2530–2540. (b) Pound, S. M.; Watson, M. P., Asymmetric synthesis via stereospecific C–N and C–O bond activation of alkyl amine and alcohol derivatives. *Chem. Commun.* **2018**, *54*, 12286–12301. (c) Wang, Q.; Su, Y.; Li, L.; Huang, H., Transitionmetal catalysed C–N bond activation, *Chem. Soc. Rev.* **2016**, *45*, 1257–1272.

4. Selected recent reviews: (a) Cheng, H.-G.; Chen, H.; Liu, Y. Zhou, Q., The Liebeskind–Srogl Cross-Coupling Reaction and its Synthetic Applications. *Asian J. Org. Chem.* **2018**, *7*, 490–508. (b) Pan, F.; Shi, Z.-J., Recent Advances in Transition-Metal-Catalyzed C–S Activation: From Thioester to (Hetero)aryl Thioether. *ACS Catalysis* **2014**, *4*, 280–288. (c) Prokopcová, H.; Kappe, C. O., The Liebeskind–Srogl C–C Cross-Coupling Reaction. *Angew. Chem. Int. Ed.* **2009**, *48*, 2276–2286.

5. Selected recent reviews: (a) Bisz, E.; Szostak, M., Iron-Catalyzed C–O Bond Activation: Opportunity for Sustainable Catalysis. *ChemSusChem* **2017**, *10*, 3964–3981. (b) Gooßen, L. J.; Gooßen, K.; Stanciu, C., C(aryl)-O Activation of Aryl Carboxylates in Nickel-Catalyzed Biaryl Syntheses. *Angew. Chem. Int. Ed.* **2009**, *48*, 3569–3571. (c) Tobisu, M.; Chatani, N., Cross-Couplings Using Aryl Ethers via C–O Bond Activation Enabled by Nickel Catalysts. *Acc. Chem. Res.* **2015**, *48*, 1717–1726. (d) Tobisu, M.; Chatani, N., Nickel-Catalyzed Cross-Coupling Reactions of Unreactive Phenolic Electrophiles via C–O Bond Activation. *Topics Curr. Chem.* **2016**, *374*, 41.

6. Aggarwal, V. K.; Humphries, P. S.; Fenwick, A., A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. *Angew. Chem. Int. Ed.* **1999**, *38*, 1985–1986.

7. Fuwa, H.; Ishigai, K.; Hashizume, K., Sasaki, M., Total Synthesis and Complete Stereostructure of Gambieric Acid A. J. Am. Chem. Soc. **2012**, *134*, 11984–11987.

8. Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M., Total Synthesis of (+)-Neopeltolide. *Angew. Chem. Int. Ed.* **2008**, *47*, 4737–4739.

9. Fuwa, H.; Sakamoto, K.; Muto, T.; Sasaki, M., Concise synthesis of the C15–C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. *Tetrahedron* **2015**, *71*, 6369–6383.

10. Selected recent reviews: (a) Fuwa, H., Palladium-Catalyzed Synthesis of N- and O-Heterocycles Starting from Enol Phosphates. *Synlett* **2011**, 6–29. (b) Han, F.-S., Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. *Chem. Soc. Rev.* **2013**, *42*, 5270–5298. (c) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J., Activation of "Inert" Alkenyl/Aryl C-O Bond and Its Application in Cross-Coupling Reactions. *Chem.Eur. J.* **2011**, *17*, 1728–1759. (d) Li, W.-N.; Wang, Z.-L., Kumada–Tamao–Corriu cross-coupling reaction of O-based electrophiles with Grignard reagents via C–O bond activation. *RSC Adv.* **2013**, *3*, 25565–25575.

11. (a) Nicolaou, K. C.; Yu, R.; Shi, L.; Cai, Q.; Lu, M.; Heretsch, P., General Synthetic Approach to Functionalized Dihydrooxepines. *Org. Lett.* **2013**, *15*, 1994–1997. (b) Takai, K.; Oshima, K.; Nozaki, H., Carbon-carbon bond formation by cross-coupling of enol phosphates with organoaluminium compounds catalyzed by palladium(O) complex. *Tetrahedron Lett.* **1980**, *21*, 2531–2534.

12. (a) Fuwa, H.; Sasaki, M., Synthesis of 2-Substituted Indoles and Indolines via Suzuki-Miyaura Coupling/5-endo-trig Cyclization Strategies. J. Org. Chem. 2009, 74, 212-221 (b) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T., Direct synthesis of 1,1-diarylalkenes from alkenyl phosphates via nickel(0)-catalysed Suzuki-Miyaura coupling. Chem. Commun. 2006, 4137-4139. (c) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T., Investigations on the Suzuki-Miyaura and Negishi Couplings with Alkenyl Phosphates: Application to the Synthesis of 1.1-Disubstituted Alkenes, J. Org. Chem. 2007, 72, 6464–6472. (d) Nakatsuji, H.; Ashida, Y.; Hori, H.; Sato, Y.; Honda, A.; Taira, M.; Tanabe, Y., (E)- and (Z)-stereodefined enol phosphonates derived from β -ketoesters: stereocomplementary synthesis of fully-substituted α.β-unsaturated esters. Ora. Biomol. Chem. 2015. 13. 8205–8210. (e) Nan. Y.: Yang, Z., Nickel-catalyzed crosscouplings of cyclohexenyl phosphate and arylboronic acids. Tetrahedron Lett. 1999, 40, 3321-3324.

13. (a) Cahiez, G.; Avedissian, H., Highly Stereo- and Chemoselective Iron-Catalvzed Alkenvlation of Organomagnesium Compounds. Synthesis, 1998, 1199–1205. (b) Cahiez, G.; Gager, O.; Habiak, V., Iron-Catalyzed Alkenylation of Grignard Reagents by Enol Phosphates. Synthesis, 2008, 2636–2644. (c) Cahiez, G.; Habiak, V.; Gager, O., Efficient Preparation of Terminal Conjugated Dienes by Coupling of Dienol Phosphates with Grignard Reagents under Iron Catalysis. Org. Lett., 2008, 10, 2389-2392. (d) Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C., A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. ACS Catalysis 2018, 8, 1392–1398. (e) Gauthier, D.; Beckendorf, S.; Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T., A Ligand Free and Room Temperature Protocol for Pd-Catalyzed Kumada–Corriu Couplings of Unactivated Alkenyl Phosphates. J. Org. Chem. 2009, 74, 3536–3539. (f) Karlström, A. S. E.; Itami, K.; Bäckvall, J.-E., Nickel-Catalyzed Cross-Coupling of Dienyl Phosphates with Grignard Reagents in the Synthesis of 2-Substituted 1,3-Dienes. J. Org. Chem., 1999, 64, 1745–1749. (g) You, W.; Li, Y.; Brown, M. K., Stereoselective Synthesis of All-Carbon Tetrasubstituted Alkenes from In Situ Generated Ketenes and Organometallic Reagents. Org. Lett., 2013, 15, 1610-1613.

14. Lindhardt, A. T.; Gøgsig, T. M.; Skrydstrup, T., Studies on the 1,2-Migrations in Pd-Catalyzed Negishi Couplings with JosiPhos Ligands. *J. Org. Chem.* **2009**, *74*, 135–143.

15. (a) Ebran, J.-P.; Hansen, A. L.; Gøgsig, T. M.; Skrydstrup, T., Studies on the Heck Reaction with Alkenyl Phosphates: Can the 1,2-Migration Be Controlled? Scope and Limitations, *J. Am. Chem. Soc.*, **2007**, *129*, 6931–6942. (b) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.; Skrydstrup, T., Heck Coupling with Nonactivated Alkenyl Tosylates and Phosphates: Examples of Effective 1,2-Migrations of the Alkenyl Palladium(II) Intermediates. *Angew. Chem. Int. Ed.* **2006**, *45*, 3349–3353.

16. Hu, X.-H.; Yang, X.-F.; Loh, T.-P. Selective Alkenylation and Hydroalkenylation of Enol Phosphates through Direct C–H Functionalization. *Angew. Chem. Int. Ed.* **2015**, *54*, 15535–15539.

17. Ackermann, L.; Barfüsser, S.; Pospech, J., Palladium-Catalyzed Direct Arylations, Alkenylations, and Benzylations through C–H Bond Cleavages with Sulfamates or Phosphates as Electrophiles. *Org. Lett.* **2010**, *12*, 724-726.

18. (a) Lagerlund, O.; Mantel, M. L. H.; Larhed, M., Aminocarbonylations of alkenyl phosphates, chlorides, bromides, and triflates with Mo(CO)₆ as a solid CO source. *Tetrahedron* **2009**, *65*, 7646–7652. (b) Takeuchi, R.; Akiyama, Y., Iridium complex-catalyzed carbonylation of allylic phosphates, J. *Organomet. Chem.* **2002**, *651*, 137–145.

19. (a) Kotek, V.; Polák, P.; Dvořáková, H.; Tobrman, T., Aluminum Chloride Promoted Cross-Coupling of Trisubstituted Enol Phosphates with Organozinc Reagents En Route to the Stereoselective Synthesis of Tamoxifen and Its Analogues. *Eur. J. Org. Chem.* **2016**, 5037–5044. (b) Polák, P.; Tobrman, T., Novel Selective Approach to Terminally Substituted [n]Dendralenes, *Eur. J. Org. Chem.* **2019**, 957–968. 21. (c) Polák, P.; Čejka, J.; Tobrman, T., Formal Transition-Metal-Catalyzed Phosphole C-H Activation for the Synthesis of Pentasubstituted Phospholes. *Org Lett.* **2020**, *22*, 2187–2190. (d) Čubiňák, M.; Eigner, V.; Tobrman, T., Bench-Stable Sulfoxide-Based Boronates: Preparation and Application in a Tandem Suzuki Reaction. *Adv. Synth. Catal.* **2018**, *360*, 4604–4614. (e) Kotek, V.; Dvořáková, H.; Tobrman, T., Modular and Highly Stereoselective Approach to All-Carbon Tetrasubstituted Alkenes. *Org. Lett.* **2015**, *17*, 608–611.

 20. (a) Gong, H.; Sinisi, R.; Gagné, M. R., A Room Temperature Negishi Cross-Coupling Approach to C-Alkyl Glycosides. J. Am. Chem. Soc. 2007, 129, 1908–1909. (b) Hadei, N.; Kantchev, E. A. B.; O'Brie, C. J.; Organ, M. G., The First Negishi Cross-Coupling Reaction of Two Alkyl Centers Utilizing a Pd–N-Heterocyclic Carbene (NHC) Catalyst. Org. Lett. 2005, 7, 3805–3807. (c) Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G., Room-Temperature Negishi Cross-Coupling of Unactivated Alkyl Bromides with Alkyl Organozinc Reagents Utilizing a Pd/N-Heterocyclic Carbene Catalyst. J. Org. Chem. 2005, 70, 8503–8507. (d) Zhou, J.; Fu, G. C., Cross-Couplings of Unactivated Secondary Alkyl Halides: Room-Temperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides. J. Am. Chem. Soc. 2003, 125, 14726–14727.

21. Muraki, T.; Yokoyama, M.; Togo, H., Iodophosphoryloxylation of carbon-carbon multibonds and its application to glycals. *J. Org. Chem.* **2000**, *65*, 4679–4684.

22. Xue, F.; Zhao, J.; Hor, T. S. A.; Hayashi, T., Nickel-Catalyzed Three-Component Domino Reactions of Aryl Grignard Reagents, Alkynes, and Aryl Halides Producing Tetrasubstituted Alkenes. *J. Am. Chem. Soc.* **2015**, *137*, 3189–3192.