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Abstract: Palladium-catalyzed asymmetric side-chain C(a)-allylation 
of 2-alkylpyridines without external base was developed. The high 
linear- and enantioselectivities were achieved using new chiral 
diamidophosphite monodentate ligands. Due to the no external base 
conditions, this catalyst system enabled chemoselective C(a)-
allylation of 2-alkylpyridines containing a-carbonyl C–H bonds, which 
are more acidic than a-pyridyl C–H bonds. 

Azaarenes with an a-stereogenic alkyl substituent at the C2 
position constitute an important structure motif widely found in 
biologically active compounds, agrochemicals, and natural 
products.[1] Among methods used to access these structures,[2] 
asymmetric Tsuji–Trost allylation reactions with 2-
alkylazaarenes as pronucleophiles to allow enantioselective 
C(sp3)–C(sp3) bond formation at the position a to the azaarene 
ring are promising strategies.[3] However, reported methods 
have required the use of stoichiometric or excess amounts of 
strong Brønsted bases and/or Lewis acids to activate the 
C(sp3)–H bonds of the pronucleophiles (Scheme 1a).[4-6] 

This report describes the Pd-catalyzed asymmetric C(sp3)–H 
allylation of 2-alkylpyridines with primary allylic carbonates, 
which did not require the use of an external base. With a new 
chiral diamidophosphite [P(NR1R2)2(OR3)] monodentate ligand 
featuring a D-isomannide framework with a sterically demanding 
group at a distal position, C(sp3)–C(sp3) bond formation 
occurred cleanly with exclusive regioselectivity with respect to 
the allylic portion to give enantio-enriched a-stereogenic 2-
alkylpyridines with no constitutional isomers (Scheme 1b). The 
mildness of the conditions allowed compatibility of the reaction 
with various functional groups,[7–9] which was site-selective 
toward a C(sp3)–H bond located a to the pyridine ring in the 
presence of more acidic C(sp3)–H bonds adjacent to carbonyl 
groups. 

A preliminary screening of achiral ligands for the reaction 
between 2-ethylpyridine (1a) and cinnamyl t-butyl carbonate (2a) 
with 5 mol% [Pd(dba)2] as a Pd source in MeCN at 25 °C for 6 h 
revealed that electron-deficient monophosphines and large bite-
angle bisphosphines promoted side-chain C(a)-allylation 

(Scheme 2). Specifically, P(2-furyl)3 and P(OPh)3 caused 
moderate substrate conversion to give the linear allylation 
product 3a preferentially over the branched product 3a’ (3a/3a’ 
93:7 and 97:3, respectively). Xantphos improved linear-
selectivity, albeit with an unsatisfactory yield. Further ligand 
screening revealed that Ph-TRAP,[10] featuring a very large bite 
angle, induced complete substrate conversion to give 3a 
exclusively, but with poor enantioselectivity (with Pd(OAc)2, 3% 
ee). 

This reaction occurred specifically with allylic substrates 
having carbonate leaving groups. Cinnamyl methyl carbonate 
(2b) also was a suitable substrate in the reaction with Ph-TRAP 
(95%, 3a/3a’ >99:1).[11] 

 

 
Scheme 1. Asymmetric side-chain C(a)-allylation of 2-alkylpyridines 
 

 
Scheme 2. Pd-catalyzed C(a)-allylation of 1a with 2a 
 

Next, various chiral ligands were used to achieve better 
enantioselectivity in reaction between 5,6,7,8-
tetrahydroquinoline (1b) and 2b (1.3–1.5 equiv) with [Pd(dba)2] 
(5 mol%, Pd/ligand 1:1) in MeCN at 25 °C (12 h). The results are 
summarized in Scheme 3. 

Chiral monodentate phosphoramidite ligands and a Trost’s 
bisphosphine ligand (L in Scheme 1)[4] induced no reaction. The 
Ph-TRAP again gave complete substrate conversion, albeit with 
poor enantioselectivity (19% ee). A change in the P-substituents 
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of TRAP from Ph to m-terphenyl (TerPh-TRAP)[10c] improved 
enantioselectivity to 45%. 

Further ligand screening revealed bis(diamidophosphite)-
type ligands as promising candidates.[12] The 1,3-, 1,4-, and 1,5-
alkanediol-based ligands (L1–L3) induced moderate 
enantioselectivity (58–60% ee) with high substrate conversion. 
Among bis(diamidophosphite) ligands derived from chiral 1,4-
butanediols (L4–L6), the D-isomannide derivative (L6) with a 
rigid bicyclic backbone was the most favorable for both product 
yield and enantioselectivity (91% yield, 60% ee).[13] 

An exploration of N-substituents on the 1,2-diamine moiety 
of L6 led to further improvement in enantioselectivity (69% ee) 
with L7 containing N-4-fluorophenyl groups. Introduction of the 
Me group instead of the F group decreased enantioselectivity 
significantly (L8, 49% ee). 

The effectiveness of the electron-poor monophosphines in 
the reaction of 2-ethylpyridine (1a) (Scheme 2) led to an 
exploration of monodentate diamidophosphites containing a 
N,N-(4-fluorophenyl)-1,2-diphenylethylenediamino moiety for 
enantioselective reaction of the tetrahydroquinoline 1b (Scheme 
3). Although primary (L9) and tertiary (L11) alcohol-based 
ligands induced only trace or no reaction (<6%), the ligand L10 
derived from cyclopentanol gave a high yield of 3b with 
moderate enantioselectivity (94% yield, 59% ee). These results 
indicated that the second P-center was unnecessary and 
promoted further screening of monophosphines with mono-O-
protected isomannide substituents. 

A catalyst system prepared from [Pd(dba)2] and a 
diamidophosphite (L12) having an O-benzoyl group (Pd/P 1:1) 
allowed quantitative C(a)-allylation with moderate 
enantioselectivity (62% ee). Interestingly, the O-substituent had 
a significant impact on the enantioselectivity regardless of its 
long spatial distance from the P atom. Thus, the 
enantioselectivity increased to 76% ee by changing the O-
protecting group to a benzyl group (L13). While O-silyl 
derivatives, such as L14 and L15, gave nearly the same results 
as the benzyl derivative L13, a significant increase in 
enantioselectivity was observed with the tritylated ligand L16, 
which afforded 3b with 84% ee in 95% yield. The 
enantioselectivity with L16 increased to 90% ee by conducting 
the reaction at –15 °C.[14,15] Thus, L16 was identified as the 
optimal chiral ligand. The effects of the O-protecting groups may 
be due to dispersive ligand–substrate attractions.[16,17] 

The synthetic utility of the present catalyst system was 
demonstrated in the chemoselective C(a)-allylation of 2-
alkylpyridines containing a-carbonyl C–H bonds, which are more 
acidic than a-pyridyl C–H bonds (Scheme 4). Specifically, allylic 
alkylation of 1c bearing a ketone moiety with 2b in the presence 
of the Pd-L16 system occurred cleanly to afford the side-chain 
C(a)-allylation product 3c with 82% ee in 92% yield.[18] No 
formation of carbonyl C(a)-allylation products 4 and 5 was 
observed by 1H NMR analysis. In contrast, the reaction between 
1c and 2b catalyzed by the [PdCl(p-allyl)]2/dppf system in the 
presence of LiHMDS (1.2 equiv) as a base in THF at rt did not 
produce 3c at all but gave a complex mixture.[19] With the Pd-
L16 system, 1d containing an ester moiety was also suitable. 
 

 

 
Scheme 3. Ligand effects in asymmetric C(a)-allylation. Conditions: 1b (0.2 
mmol), 2b (0.26–0.30 mmol), [Pd(dba)2] (5 mol%), ligand (5 mol%), MeCN (1 
mL), 25 °C, for 12 h. Yields of isolated product. Ee values determined by 
HPLC. 
 

 
Scheme 4. Side-chain C(a)-allylation of 2-alkylpyridines containing a-carbonyl 
C–H bonds 
 

Reactions with various combinations of 2-alkylpyridines 1 
and allylic carbonate 2 catalyzed by Pd-L16 system is shown in 
Scheme 5. The reactions occurred in the temperature range of –
20 to +10 °C with exceptional linear selectivity (l/b >99:1) and 
good-to-high enantioselectivities (63–93% ee). The allylation of 
2,3-cyclopentenopyridine with 2b occurred with an 
enantioselectivity comparable to that of 1b (3e, 96% yield, 87% 
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ee). A piperazine-fuzed substrate underwent regioselective 
allylation at the position b to the pyridine N atom with a high level 
of enantioselectivity (3f, 95% yield, 84% ee). 

Acyclic alkyl substituents of pyridine substrates were also 
allylated with the Pd-L16 system albeit with slightly lower 
enantioselectivities compared to the annulated substituent in 1b. 
For instance, 2-ethylpyridine (1a) and 2-(3-phenylpropyl)pyridine 
afforded 3a in 78% ee and 3g in 76% ee, respectively (Scheme 
5). Functional groups such as alkyne (3h), acetal (3i), 
methoxymethyl (3j), or carbamate (3k) with an N–H bond in the 
acyclic alkyl substituents did not hamper the allylation.[20,21] 

Cinnamyl carbonates 2 with electron-rich or electron-neutral 
aromatic rings participated in asymmetric reaction of 1b to give 
the corresponding C(a)-allylated products (3l–o) in high yields 
with enantioselectivities ranging from 90% to 93% ee. However, 
cinnamyl carbonates with ester- or CF3-substituted electron-
deficient aromatic rings were less reactive, and reaction at 10 °C 
occurred with somewhat lower enantioselectivities (3p and 3q). 
Indole-, furan-, and thiophene-based carbonates reacted with 1b 
to afford 3r–t in enantioselectivities ranging from 87% to 92% 
ee.[22] 
 

 

 
Scheme 5. Scope of asymmetric C(a)-allylation. Conditions: 1 (0.2 mmol), 2 
(0.26–0.3 mmol), [Pd(dba)2] (5 mol%), L16 (5 mol%), MeCN (1 mL) at –20 °C 
for 36 h. Yields of isolated products are shown. Absolute configurations of 3e, 
3f, and 3l–t were assigned by analogy to (R)-3b. Absolute configurations of 3a 
and 3g–k were assigned by analogy to (R)-3c. 
 

Reaction between 1b with methyl (1-phenylallyl) carbonate 
catalyzed by the Pd-L16 system provided the linear product 3b 
with the identical absolute configuration (R) and enantiomeric 
purity as that of 2b, but with slightly lower reaction efficiency 
(68% yield, 91% ee). This result strongly suggests that both 
reactions proceeded through a (p-allyl)palladium(II) species as a 
common intermediate. 

The P/Pd ratio had a significant impact on the efficiency of 
the reaction between 1b and 2b catalyzed by the Pd-L16 system 
(Figure 1). The reaction was conducted at –15 °C for 36 h with 
varying amounts of L16 relative to Pd in the range of 0.2 to 4.0 
equivalents. While no reaction occurred with 0.2 to 0.9 
equivalents of L16, a P/Pd ratio of 0.95 gave the moderate yield 
(57%) and enantiomeric excess (89% ee) of product (R)-3b. The 
maximum yield (99%) was obtained from a P/Pd ratio of 1.0. 
Product yield gradually decreased to 92% as the loading of L16 
increased from 1.0 to 4.0 equivalents; however, 
enantioselectivity was maintained at 91% ee. These results 
suggest that the active species is Pd-L16 in a 1:1 ratio (P/Pd 
1:1).[23] For reactions with large-bite-angle bisphosphine ligands 
such as TRAPs and Xantphos, one of the two P atoms might 
dissociate from Pd during catalysis while bidentate coordination 
in the resting state may stabilize the catalytic system. 

 

 
Figure 1. Effect of L16/Pd molar ratio in reaction between 1b and 2b (5 mol% 
Pd, in MeCN, at –15 °C, 36 h) 
 

To have a mechanistic insight, preliminary 1H NMR kinetic 
studies were conducted for the reaction between 1a and 2b with 
the Pd-L16 (1:1) system in CD3CN at rt. Thus, the rate was 
pseudo-first order for the Pd-L16 catalyst, while reaction orders 
of 0 and 0.7 were indicated for carbonate 2b and 2-ethylpyridine 
1a, respectively.[24] This result suggests the following 
mechanistic conclusions: the Pd catalyst participates in the 
reaction in a monomeric form; the allylic carbonate 2b has a 
high affinity for the Pd catalyst; and an off-cycle species is 
formed upon coordination of the alkylpyridine 1a to a catalytically 
active species. 

Kinetic analysis of reactions using 1a or 1a-d5 with 2b 
catalyzed by the Pd-L16 system in MeCN at 20–22 °C gave a 
significant kinetic isotope effect value [kH/kD = 4.0; Eq. (1)], 
which indicates that a turnover-limiting step of Pd catalysis 
involved the dissociation of a C(a)–H bond. 
 

 
 

Based on these experimental results, a reaction pathway is 
proposed in Figure 2. Thus, a mono-P-ligated Pd(0) complex A 
undergoes rapid decarboxylative oxidative addition with allylic 
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carbonate 2, to produce a neutral alkoxo(p-allyl)palladium(II) 
complex (B). Coordination of a 2-alkylpyridine (1) to B forms a 
cationic complex with an alkoxide counter anion (C). Further 
coordination of 1 to C forms an off-cycle species (D, [Pd(R1-
allyl)(P*)(1)2]+(OR2)–). Next, cleavage of a side chain C(a)–H 
bond produces the (h1-enamido)(h3-allyl)palladium(II) complex 
(E). This catalyst-turnover-limiting step should be promoted by 
effective acid–base cooperation between the cationic Pd(II) 
center bound to the N atom and the alkoxide ion interacting with 
one of the C(a)–H protons. Finally, diastereoselective reductive 
elimination of the h1-enamido ligand and the h3-allyl ligand, 
either in a direct manner or through a multi-step pathway 
involving h3-to-h1 hapticity change in the allylic ligand, furnishes 
the enantio-enriched C(a)-allylation product 3. 
 

 
Figure 2. A possible reaction pathway 
 

In conclusion, a Pd-catalyzed asymmetric side-chain C(a)-
allylation of 2-alkylpyridines without an external base was 
developed. Newly synthesized D-isomannide-based 
monodentate diamidophosphite ligands enabled the highly 
linear- and enantioselective allylation with good functional group 
compatibility. The reaction pathway is proposed to involve 
formation of a (p-allyl)palladium(II) complex coordinated with a 
single molecule of the phosphine ligand and the 2-alkylpyridine 
substrate followed by side-chain C(a)-deprotonation by an 
alkoxide anion. Studies on extending this strategy to other alkyl 
azaarenes for catalytic asymmetric C–H functionalization 
reactions are ongoing. 
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reaction with aryl-substituted allylic carbonates. 

[23] The non-linear dependence of the product yields on the P/Pd ratios 
suggests that P-uncoordinated Pd species may become a seed to 
induce rapid catalyst decomposition leading to total catalyst 
deactivation. 

[24] See the Supporting Information for details of the kinetic studies. 
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