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ABSTRACT: Copper, an earth-abundant metal, has reemerged as
a viable alternative to the versatile Pd-catalyzed C−N coupling.
Coupling sterically hindered reaction partners, however, remains
challenging. Herein, we disclose the discovery and development of
a pyrrole-ol ligand to facilitate the coupling of ortho-substituted aryl
iodides with sterically hindered amines. The ligand was discovered
through a library screening approach and highlights the value of
mining heteroatom-rich pharmaceutical libraries for useful ligand
motifs. Further evaluation revealed that this ligand is uniquely effective in these challenging transformations. The reaction enables
the coupling of sterically hindered primary and secondary amines, anilines, and amides with broad functional group tolerance.
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Anilines represent a privileged class of amines in nature, as
well as pharmaceuticals, agrochemicals, and other

valuable organic materials.1 Consequently, transition metal-
catalyzed C−N-bond formation has become critically
important to organic synthesis. While a number of d-block
metals have been investigated for this reaction, the two most
common metals remain palladium (Buchwald−Hartwig
amination2) and copper (Ullmann−Goldberg-type3 and
Chan−Lam4 amination). Exploration of palladium-catalyzed
C−N-coupling reactions started almost 25 years ago
concurrently by Buchwald and Hartwig.5 Concentrated effort
across a number of groups has positioned the Buchwald−
Hartwig reaction as the dominant amination method with
broad substrate scope and high selectivities.6 While much
progress has been made with the copper-catalyzed variants, the
Ullmann-type amination has lagged in terms of both
electrophile and amine scope.7 Early advances came
independently from Ma,8 Goodbrand,9 Buchwald,10 and
others.11,12 Recently, the Ma group introduced oxalamide
ligands that enable low catalyst loading and the use of aryl
chlorides as electrophilesaddressing key challenges for
copper-catalyzed amination.13 Copper-catalyzed C−N-cou-
pling reactions with hindered partners, however, remain an
unsolved problem (Figure 1a).12b Currently, there exist only a
few examples where an ortho methyl group can be tolerated on
the electrophile (Figure 1a).13,14 Furthermore, examples with
ortho,ortho′-disubstituted electrophiles with sterically hindered
amines have not been reported. Although alternative base
metal-catalyzed approaches exist to synthesize sterically
encumbered anilines (Figure 1b),15 they rely on fundamentally
different building blocks. Here, we describe a novel ligand that
enables very challenging and previously unreported direct
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Figure 1. (a) Existing copper-catalyzed C−N-coupling reactions
remain limited in sterically demanding environments. (b) Previous
approaches for base metal-catalyzed aniline synthesis. (c) A novel
pyrrole-ol ligand enables C−N coupling of sterically hindered
partners.
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aminations with sterically hindered coupling partners using
copper catalysis (Figure 1c).
We were interested in identifying a ligand for Cu to couple

sterically hindered electrophiles and nucleophilesa challenge
even for Pd-based methods.16 Despite several new ligands for
Cu reported in the recent years, coupling of sterically hindered
partners remains a formidable challenge. The discovery of a
more effective ligand is critical to the success of this
transformation. Given the recent success with evaluating
pharmaceutical compound libraries as ligands for metal-
catalyzed reactions,17 AbbVie’s internal compound library
was screened as ligands for copper. The coupling of
bromobenzene with 1-methyl-3-phenylpiperazine sought to
evaluate 54 nonproprietary compounds that were previously
examined for Cu-catalyzed C−O coupling (Scheme 1).17b

Interestingly, 2,2,2-trifluoro-1-phenyl-1-(1H-pyrrol-2-yl)ethan-
1-ol (L1), a compound that had not been previously applied as
a ligand, produced the highest yield of the coupled product (74
HPLC peak area%).14d,18 Surprisingly, the more sterically
hindered substrate combination, 2-bromotoluene and 1-
methyl-3-phenylpiperazine, coupled to form product only in
the presence of L1.
Ligand L1 was chosen for further optimization (Table 1).

Formation of an almost equal amount of the C−O coupled
product 1a was observed as a side-product in the reaction
(entry 1). The addition of molecular sieves to the reaction
mixture suppressed the C−O coupling product but failed to
improve the yield of the desired product (entry 2). We
speculated that base-mediated ligand degradation led to
catalyst deactivation through the formation of phenyl(1H-
pyrrol-2-yl)methanone L1′.19 Further evaluation of both the
target reaction and ligand stability demonstrated rapid, base-
mediated decomposition to phenyl(1H-pyrrol-2-yl)methanone
L1′, and it functions as an inhibitor for the reaction. Although
lowering the reaction temperature suppressed ligand degrada-
tion, it also slowed the reaction. In an attempt to increase the
lifetime of active catalyst and to block ligand degradation, a

variety of mild reductants were evaluated. Interestingly, a
stochiometric amount of Hantzsch ester (HE) increased the
catalyst lifetime.20 Conversely, ascorbic acid offered no
improvement.21 In the presence of one equivalent of Hantzsch
ester, the desired product was obtained in 33% yield (entry 3).
Next, the more reactive electrophile, 2-iodotoluene, was tested
in the reaction. The desired product was obtained in a higher
42% yield along with 50% of 1a (entry 4). As observed earlier,
addition of molecular sieves suppressed the ether formation
(entry 5). The higher yield of 1 (64%) was observed by
conducting the reaction in the presence of 0.5 equiv of HE at
80 °C (entry 6). Fortunately, employing additional base (4
equiv) and amine (1.7 equiv) produced the desired product in
86% yield after 24 h (entry 7).
As discussed above, this type of sterically demanding

coupling is unprecedented with a Cu catalyst. To better
understand the catalyst landscape, we also screened 46
established ligands for Cu in this reaction using a high-
throughput approach. To our surprise, none of the established
ligands resulted in the formation of 1 in any appreciable yield
(Table S1).22 These results suggest that the catalyst derived
from L1 and CuI may be unique in its reactivity for sterically
demanding C−N couplings.
Next, we evaluated the structure−activity relationships for

the pyrrole-ol-based N−O type ligands. Systematically
replacing the phenyl ring of L1 resulted in significant variations
in yield (L2−L8, Table 2). Pentafluorobenzene-containing
ligands (L3, L18, L20), for example, showed no reactivity
possibly because of decreased ligand stability under the
reaction conditions, ejecting C6F5

− as a leaving group. The
pyrrole-ol ligand bearing a benzyl substituent (L7), which is
presumably less prone to elimination, provided a minor
improvement in yield. The unprotected pyrrole moiety proved
critical to afford a ligand which promote the overall reaction in
reasonable yields (L9−L13, Table 2). Finally, evaluation of the
R3- substituent (L14−L18, Table 2) revealed that the
trifluoromethyl group is crucial for the ligand reactivity
presumably due to its steric and electronic properties. On the
basis of these results, L7 was chosen for further reaction
optimization, providing 90% of the desired product under the
optimal conditions (described in Table 1, entry 7).
A diverse range of sterically crowded amines with varied N−

H pKa values were explored for the coupling with ortho-
substituted aryl iodide. Satisfyingly, the protocol was successful
for amines with an N−H pKa window of ∼20 to ∼40.23 Next,

Scheme 1. Discovery of Trifluoromethylated Pyrole-ol-
Based Ligand

aArea% of the coupled products determined by HPLC is reported.

Table 1. Initial Reaction Optimization

aGC yield. bBased on unreacted aryl halide. cReaction was conducted
at 80 °C. MS = molecular sieves.
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we explored the substrate scope with regard to various ortho-
substituted aryl iodides and 1-methyl-3-phenylpiperazine. Not
surprisingly, larger ortho substituents led to lower yields (1−3,
Scheme 2). Next, we tested the scope of ortho substituted aryl
iodides with the bioactive and sterically demanding 1-phenyl-
1,2,3,4-tetrahydroisoquinoline (4−13).24 The catalyst demon-
strated excellent reactivity with electron-neutral (4−6) or
electron-donating (7) substituents at the ortho position of the
aryl iodide. To our delight, a bulky N,N-di-n-butyl-amino
group was well tolerated in the reaction (8). Importantly, 2-
bromo-iodobenzene promoted the C−N coupling preferen-
tially at the iodide with >20:1 chemoselectivity (9).
Surprisingly, aryl iodides with electron-deficient substituents
at the ortho position resulted in low-to-moderate yield (10−
12) with significant halide-reduction product. Control
reactions revealed that this unwanted side product was not
due to hydride donation from the Hantzsch ester (10).
Excitingly, hindered 2,6-dimethyl-iodobenzene reacted suc-
cessfully to form 13, a unprecedented reaction for copper
catalysis. The ligand even enabled sterically demanding
primary amines to couple with ortho-substituted iodides
(16−21). As expected, 2,6-dimethyl-substituted aryl iodides
provided satisfactory yield of the desired products (18−20,
26). Additionally, this protocol offered excellent reactivity with
2,6-dimethylaniline (23−26, 28). The reactivity with 2,6-
diisopropylaniline further established the versatility of this
catalyst system (27). Furthermore, this method is also
applicable to cyclic amides (29−30), anilide (31), and an
amino acid derivative (22). As an investigation into
medicinally relevant heterocycles, a series of heteroaryl iodides

and amines were tested. Moreover, pyridine, thiophane, and
pyrazole moieties were well tolerated by the catalyst (32−37).

Table 2. Screening of Pyrole-ol-Based Liganda

aReaction conditions: iodide 0.1 mmol, amine 1.7 equiv, CuI 10 mol
%, ligand 10 mol %, 100 mg 4 Å MS, HE 1 equiv, K3PO4 4 equiv,
DMSO 0.2 M, 90 °C, 24 h. HE = Hantzsch ester

Scheme 2. Substrate Scope for C−N Coupling Reaction

a10 mol % Cu/L7; b2 mol % Cu/L7; c5 mol % Cu/L7; d8 mol %
Cu/L7; ewithout HE; f48 h; g60 h. HE = Hantzsch ester
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The origin for the effectiveness of pyrrole-ol-based ligands
for enabling the Cu-catalyzed coupling of sterically hindered
coupling partners remains worthy of further mechanistic
consideration. We expect L7 to be deprotonated under the
reaction conditions and act as either mono- or bis-anionic
ligand for Cu.25 Likely, L7 forms a highly electron-rich Cu(I)
or anionic Cu(I)-complex that promotes oxidative addition
even with sterically hindered electrophiles.26

In summary, we have disclosed a new ligand that enables an
unprecedented Cu-catalyzed method for coupling ortho- and
ortho,ortho′-substituted aryl iodides with sterically hindered
primary aliphatic amines, anilines, and amides. The unique
reactivity and novel pyrrole-ol structural motif of ligand L7 was
discovered by mining AbbVie’s internal compound library
demonstrating the value of screening pharmaceutical com-
pound libraries for ligand discovery in challenging metal-
catalyzed reactions. Complementary to the rational ligand
design and optimization, this approach has the potential to
identify previously unexplored and nonobvious compounds as
ligands. Our future studies will focus on detailed mechanistic
studies to elucidate the role of pyrrole-ol ligands in Cu-
catalyzed reactions.
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