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a b s t r a c t

A tetranitrile monomer was synthesized by nucleophilic aromatic substitution of N,N0-(2,20-(propane-1,3-
diylbis(sulfanediyl))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide) onto 4-nitrophthalonitrile. A
metal-free phthalocyanine polymer was prepared by the reaction of the tetranitrile monomer under N2 in
the presence of 2-(dimethylamino)ethanol at 145 �C for 24 h. Zinc(II), copper(II), cobalt(II), nickel(II), lead
(II), phthalocyanine polymers were prepared by reaction of the tetranitrile with the chlorides of zinc (II),
copper (II), cobalt (II), nickel (II), lead (II), employing microwave irradiation in the presence 2-(dimethy-
lamino)ethanol at 175 �C, 350W for 10min. The thermal stabilities of the phthalocyanine compoundswere
determined by thermogravimetric analysis. The new compounds were characterized by a combination of
IR, 1H NMR, 13C NMR, UVevis, elemental analysis and MS spectral data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Phthalocyanines are an important class of organic materials
with a very stable electronic configuration which makes them an
important class of functional materials [1]. Metal-free phthalocy-
anine and its metal complexes have been intensively investigated
since the early-1930s. Phthalocyanine chemistry is undergoing
a renaissance because phthalocyanines and many of their deriva-
tives exhibit singular and unconventional physical properties
which are interesting for applications in materials science [2]. They
can be used in jet printing inks [3], catalysts [4], gas sensors [5] and
photonic devices [6,7] and because of the flexibility in tailoring
the electrical and optical properties, phthalocyanines can be used
in many devices like: fuel cells, organic metals, electronic media,
photoelectrical detectors, xerographic media, field effect transis-
tors [8], light-emitting diodes [9e11], optical recording, optical
memories, information displays [12], hole-burning memories,
light-limiters, lasers, non-linear optical elements, etc. [13]. The
photoactive semiconducting properties of phthalocyanine mono-
mers and polymers makes possible the production of low cost,
flexible [14,15]. In organic photovoltaic devices, dissociation of
All rights reserved.
photo-generated excitons occurs leading to photocurrent in the
external circuit [16e18].

Recently, phthalocyanines have been used as photosensitizers in
the treatment of cancer [19e21] and intimal hyperplasia [22] for
photodynamic therapy (PDT). Due to the intense absorption in the
visible region, high efficiency to generate reactive oxygen species
(such as singlet oxygen), and low dark toxicity, phthalocyanines
have been used in this avenue for the treatment of various cancers
and photoinactivation of viruses [23e25]. PDT dyes are recognized
as efficient sensitizers of singlet oxygen and the involvement of
singlet oxygen in the PDT process is nowwidely accepted, thus, the
relative photooxidation rate by singlet oxygen catalyzed by these
dyes has been examined.

In the recent years, it has been recognized that microwave
processing has attracted potential as an alternative to classical
processing because of the inherent advantages of microwave
heating, which is selective, direct, rapid, internal, and controllable
[26]. Microwave processing has therefore been applied in such
varied fields as pulp drying, food cooking, organic synthesis,
ceramic sintering, composite joining, chemical analyses, and waste
treatment [27,28].

Beingdiscovered in 1950s, polymeric phthalocyanine remains an
enigmatic material and many of its intrinsic properties are known
rather insufficiently [29]. Polymeric phthalocyanines were mainly
prepared via polycyclotetramerization reactions of bifunctional
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monomers suchas variousnitriles or tetracarboxylic acidderivatives
in the presence of metal salts or metals.

We have previously described the synthesis of novel tetrakis
[N,N0-(2,20-(propane-1,3-diylbis(sulfanediyl))bis(ethane-2,1-diyl))
bis(4-methylbenzenesulfonamide)-phthalocyanine] and its metal
derivatives [30] and new polymeric phthalocyanines substituted
with pyridine through methyleneoxy bridges [31]. In the present
paper, we describe the synthesis and characterization of metal-free
4 and metallophthalocyanine polymers 5, 6, 7, 8 and 9 by micro-
wave irradiation.

2. Experimental

All reactions were carried out under a nitrogen atmosphere
using Standard Schlenk techniques. The IR spectra were recorded
on a Perkin Elmer 1600 FTIR spectrophotometer, using potassium
bromide pellets. 1H and 13C NMR spectra were recorded on a Var-
ian Mercury 200 MHz spectrometer in DMSO-d6 or CDCl3, and
chemical shifts (d) are reported relative to Me4Si as internal
standard. Mass spectra were measured on a Varian 711 and VG
Zapspec spectrometer. Elemental analysis were determined by
a LECO Elemental Analyser (CHNS O932) and Unicam 929 AA
spectrophotometer. UVevis absorption spectra were measured by
a Unicam UVevisible spectrometer. A Seiko II Exstar 6000 thermal
analyzer was used to record DTA curves under nitrogen atmo-
sphere with a heating rate of 20 �C min�1 in the temperature
range 30e900 �C using platinum crucibles. Melting points were
measured on an electrothermal apparatus. A domestic microwave
oven (Arçelik MD 823) was used for all the syntheses of
phthalocyanines.

2.1. N,N0-(2,20-(propane-1,3-diylbis(sulfanediyl))bis(ethane-2,1-
diyl))bis(N-(3,4-dicyanophenyl)-4-methylbenzenesulfonamide)(3)

N,N0-(2,20-(propane-1,3-diylbis(sulfanediyl))bis(ethane-
2,1diyl))bis(4-methylbenzenesulfonamide) 1 [30] (1 g, 1.99 mmol)
was dissolved in dry DMF (20 mL) under N2 and 4-nitro-
phthalonitrile 2 (0.688 g., 3.98 mmol) was added to the solution.
After stirring for 10 min, finely ground anhydrous K2CO3 (0.823 g,
5.97mmol)was addedportionwisewithin 2 hwith efficient stirring.
The reaction mixture was stirred under N2 at 50 �C for 5 days. Then
the solution was poured into ice-water (100 g). The precipitate
formed was dried in vacuo over P2O5. The crude product was crys-
tallized from ethanol. Yield: % 82, 1.230 g, mp: 197e199 �C. Anal.
Calcd. For (C37H34N6O4S4) (%): C, 58.86; H, 4.54; N, 11.13; S, 16.99.
Found:C, 58.54;H, 4.24;N,11.46; S,16.46. IR (KBrpellets)nmax/cm�1:
3070 (AreH), 2925e2856 (Aliph. CeH), 2234 (C^N), 1668 (C]C),
1489e1387 (S]O),1445e1408e1254e706 (CH2eSeC),1353 (CeN).
1H NMR (CDCl3), (d:ppm): 8.01 (d, 2H, AreH4), 7.74 (s, 2H, AreH1),
7.71 (d, 2H, AreH5), 7.48 (dd, 8H, AreTseH,), 2.95 (t, 4H, NeCH2),
2.87 (s, 6H, CH3), 2.60 (m, 4H, CH2eSeCH2), 2.43 (m, 4H,
CH2eSeCH2), 1.24 (m, 2H, CH2). 13C NMR (CDCl3): d ¼ 144.14
(AreC14), 134.45(AreC4), 132.47 (AreC13), 130.16 (AreC5), 127.33
(AreC12eTs), 123.90 (AreC2), 114.70 (C^N), 49.77 (NeCH2), 30.55
(SeC9), 29.72 (SeC8), 21.68 (CH2), 21.59 (CH3). MS;m/z¼ 754 [M]þ.

2.2. Metal-free phthalocyanine (4)

Compound 3 (0.2 g, 0.265 mmol) and 2-(dimethylamino)
ethanol (2 mL) was placed in a Schlenk tube under nitrogen in the
presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.232 g,
1.5 mmol), gently heated, and subsequently heated at 145 �C for
24 h. After cooling to room temperature the reaction mixture
refluxed with ethanol (30 mL) to precipitate the product which was
filtered off. The dark green product was washed with hot
EtOHeMeOH and dried in vacuo. Yield: 0.057 g. (37%), mp:
>300 �C. Anal. Calcd. (for CN end groups) (C148H138N24O16S16)n (%):
C, 58.82; H, 4.60; N,11.12; S, 16.98. Found: C, 57.73; H, 4.76; N,11.82;
S, 17.17. IR (KBr pellets): 3436 (NeH), 3058 (AreH), 2921e2851
(Aliph. CeH), 2214 (C^N), 1722, 1640 (C]C), 1593, 1465e1158 (S]
O), 1401 (CH2eSeC), 1245 cm�1 (AreNeC), 1090, 814. 1H NMR
(DMSO): d¼ 7.74 (m,12H, AreH), 7.71 (m,16H, AreTs), 7.49 (m,16H,
AreTs), 7.23 (m, 12H, AreH), 3.86 (t, 16H, NeCH2), 2.75 (t, 16H,
SeCH2), 2.68 (t, 16H, SeCH2), 2.39 (s, 24H, CH3), 1.75 (m, 8H, CH2).
13C NMR (DMSO): d ¼ 162.16, 151.43 (AreC), 144.76, 136.54, 134.88
(AreTseC), 130.15, 128.31 (AreTseCH), 125.43, 124.72, 122.66
(AreCH), 59.12, 58.48 (NeCH2), 35.94, 33.16 (SeCH2), 28.56 (CH2).
UVeVis [(in pyridine) lmax/nm10�53 (mol�1 cm�1)]: 710 (5.26), 677
(5.30), 615 (4.86), 343 (5.25) MS; m/z ¼ 3078 [M þ K þ H2O]þ.

2.3. Zinc (II) phthalocyanine (5)

Compound 3 (0.2 g, 0.265 mmol), anhydrous ZnCl2 (0.009 g,
0.0662 mmol) and 2-(dimethylamino)ethanol (2 mL) was irradi-
ated in a microwave oven at 175 �C, 350W for 10 min. After cooling
to room temperature the reaction mixture refluxed with ethanol
(30 mL) to precipitate the product which was filtered off. The dark
green product was washed with hot EtOHeMeOH and dried in
vacuo. Yield: 75 mg (36%), mp: >300 �C. Anal. Calcd. (for imide end
groups) (C148H140N20O24S16Zn)n (%): C, 56.23; H, 4.46; N, 8.86; S,
16.23. Found: C, 56.77; H, 5.09; N, 9.38; S, 16.00. IR (KBr pellets):
3436 (imide NeH), 3058 (AreH), 2921e2857 (Aliph. CeH), 1774
(sym. C]O), 1717 (asym. C]O), 1651 (C]C), 1596, 1487e1347 (S]
O), 1401 (CH2eSeC). 1256 cm�1 (AreNeC). 1H NMR (CDCl3):
d ¼ 7.94 (m, 12H, AreH), 7.69 (m, 16H, AreTs), 7.43 (m, 16H, AreTs),
7.18 (m, 12H, AreH), 4.14 (t, 16H, NeCH2), 2.88 (t, 16H, SeCH2), 2.72
(t, 16H, SeCH2), 2.54 (s, 24H, CH3), 1.62 (m, 8H, CH2). 13C NMR
(DMSO): d ¼ 154.23, 152.90 (AreC), 134.01, 133.35, 131.61
(AreTseC), 129.81, 128.58 (AreTseCH), 124.61, 124.30, 123.39
(AreCH), 59.63, 59.57 (NeCH2), 36.11, 35.01 (SeCH2), 29.71 (CH2).
UVeVis [(in pyridine) lmax/nm10�5 3(mol�1 cm�1)]: 690 (5.25), 624
(4.65), 358 (4.99). MS; m/z ¼ 3180 [M þ H2O þ 1]þ.

2.4. Copper (II) phthalocyanine (6)

Compound 3 (0.2 g, 0.265 mmol), anhydrous CuCl2 (0.0089 g,
0.0662 mmol) and 2-(dimethylamino)ethanol (2 mL) was irradi-
ated in a microwave oven at 175 �C, 350 W for 10 min. After
cooling to room temperature the reaction mixture refluxed with
ethanol (30 mL) to precipitate the product which was filtered off.
The dark green product was washed with hot EtOHeMeOH and
dried in vacuo. Yield: 58 mg (28%), mp: >300 �C. Anal. Calcd. (for
imide end groups) (C148H140N20O24S16Cu)n (%): C, 56.26; H, 4.47;
N, 8.87; S, 16.24. Found: C, 56.65; H, 4.73; N, 9.03; S, 16.78. IR (KBr
pellets): 3306 (imide NeH), 3060 (AreH), 2917e2862 (Aliph.
CeH), 1778 (sym. C]O), 1718 (asym. C]O), 1597, 1469e1345 (S]
O), 1404 (CH2eSeC), 1278 cm�1 (AreNeC). UVeVis [(in pyridine)
lmax/nm10�5 3(mol�1 cm�1)]: 689 (5.33), 623 (4.91), 329 (5.08).
MS; m/z ¼ 3159 [M]þ.

2.5. Cobalt(II) phthalocyanine (7)

Compound 3 (0.2 g, 0.265 mmol), anhydrous CoCl2 (0.0086 g,
0.0662 mmol) and 2-(dimethylamino)ethanol (2 mL) was irradi-
ated in a microwave oven at 175 �C, 350W for 10 min. After cooling
to room temperature the reaction mixture refluxed with ethanol
(30 mL) to precipitate the product which was filtered off. The dark
green product was washed with hot EtOHeMeOH and dried in
vacuo. Yield: 66 mg (32%), mp: >300 �C. Anal. Calcd. (for imide end
groups) (C148H140N20O24S16Co)n (%): C, 56.35; H, 4.47; N, 8.88;
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S, 16.26. Found: C, 56.49; H, 4.43; N, 8.48; S, 16.84. IR (KBr pellets):
3304 (imide NeH), 3062 (AreH), 2921e2862 (Aliph. CeH), 1775
(sym. C]O), 1718 (asym. C]O), 1595, 1470e1348 (S]O), 1404
(CH2eSeC), 1248 cm�1 (AreNeC). 1H NMR (DMSO): d ¼ 7.86 (m,
12H, AreH), 7.64 (m, 16H, AreTs), 7.54 (m, 16H, AreTs), 7.29 (m,
12H, AreH), 4.37(t, 16H, NeCH2), 2.78 (t, 16H, SeCH2), 2.72 (t, 16H,
SeCH2), 2.43 (s, 24H, CH3), 1.58 (m, 8H, CH2). 13C NMR (DMSO):
d ¼ 157.89, 156.34 (AreC), 132.35, 131.24, 130.02 (AreTseC), 128.58,
126.24 (AreTseCH), 123.97, 123.78, 121.58 (AreCH), 59.54, 59.51
(NeCH2), 36.68, 35.24 (SeCH2), 27.81 (CH2). UVeVis [(in pyridine)
lmax/nm10�5 3(mol�1 cm�1)]: 671 (5.44), 608 (5.06), 302 (5.41).
MS; m/z ¼ 3223 [M þ 3Na þ 1]þ.

2.6. Nickel(II) phthalocyanine (8)

Compound 3 (0.2 g, 0.265 mmol), anhydrous NiCl2 (0.0086 g,
0.0662 mmol) and 2-(dimethylamino)ethanol (2 mL) was irradi-
ated in a microwave oven at 175 �C, 350W for 10 min. After cooling
to room temperature the reaction mixture refluxed with ethanol
(30 mL) to precipitate the product which was filtered off. The dark
green product was washed with hot EtOHeMeOH and dried in
vacuo. Yield: 73 mg (35%), mp: >300 �C. Anal. Calcd. (for imide end
groups) (C148H140N20O24S16Ni)n (%): C, 56.35; H, 4.47; N, 8.88;
S, 16.26. Found: C, 56.36; H, 4.54; N, 8.15; S, 16.78. IR (KBr pellets):
3285 (imide NeH), 3060 (AreH), 2919e2857 (Aliph. CeH), 1776
(sym. C]O), 1714 (asym. C]O), 1596, 1470e1347 (S]O), 1407
(CH2eSeC), 1254 cm�1 (AreNeC). 1H NMR (DMSO): d ¼ 7.86 (m,
12H, AreH), 7.72 (m,16H, AreTs), 7.45 (m,16H, AreTs), 7.13 (m,12H,
AreH), 3.99 (t, 16H, NeCH2), 2.86 (t, 16H, SeCH2), 2.83 (t, 16H,
SeCH2), 2.39 (s, 24H, CH3), 1.74 (m, 8H, CH2). 13C NMR (DMSO):
d ¼ 150.95, 148.30 (AreC), 142.05, 137.32, 134.98 (AreTseC), 130.07,
129.76 (AreTseCH), 125.68, 124.43, 122.86 (AreCH), 59.32, 58.35
(NeCH2), 35.38, 32.27 (SeCH2), 29.79 (CH2). UVeVis [(in pyridine)
lmax/nm10�5 3(mol�1 cm�1)]: 683 (5.27), 617 (4.94), 305 (5.40). MS;
m/z ¼ 3154 [M]þ.

2.7. Lead(II) phthalocyanine (9)

Compound 3 (0.15 g, 0.1989 mmol), anhydrous PbCl2 (0.014 g,
0.0497 mmol) and 2-(dimethylamino)ethanol (2 mL) was irradi-
ated in a microwave oven at 175 �C, 350W for 10 min. After cooling
to room temperature the reaction mixture refluxed with ethanol
(30 mL) to precipitate the product which was filtered off. The dark
green product was washed with hot EtOHeMeOH and dried in
vacuo. Yield: 41 mg (25%), mp: >300 �C. Anal. Calcd. (for imide end
groups) (C148H140N20O24S16Pb)n (%): C, 53.82; H, 4.27; N, 8.48; S,
15.53. Found: C, 53.32; H, 4.11; N, 8.70; S, 16.29. IR (KBr pellets):
3306 (imide NeH), 3059 (AreH), 2921e2861 (Aliph. CeH), 1778
(sym. C]O), 1725 (asym. C]O), 1596, 1482e1324 (S]O), 1399
(CH2eSeC), 1248 cm�1 (AreNeC). 1H NMR (DMSO): d ¼ 8.01 (m,
12H, AreH), 7.59 (m, 16H, AreTs), 7.55 (m, 16H, AreTs), 7.47 (m,
12H, AreH), 4.43 (t, 16H, NeCH2), 2.83 (t, 16H, SeCH2), 2.76 (t, 16H,
SeCH2), 2.51 (s, 24H, CH3), 1.64 (m, 8H, CH2). 13C NMR (DMSO):
d¼ 157.59, 155.76 (AreC), 145.63, 139.98, 132.83 (AreTseC), 130.94,
127.96 (AreTseCH), 127.54, 125.86, 124.21 (AreCH), 54.51, 52.16
(NeCH2), 35.16, 32.19 (SeCH2), 31.23 (CH2). UVeVis [(in pyridine)
lmax/nm10�5 3(mol�1 cm�1)]: 721 (5.36), 681 (5.08), 345 (5.19). MS;
m/z ¼ 3306 [M þ 3]þ.

2.8. The conversion of cyano end groups of the polymeric
metal-free phthalocyanine into imido groups (4a)

A sample of compound 4 (0.15 g, 0.0497 mmol) was dissolved in
a minimum volume of H2SO4 (96 wt.-%) at room temperature. After
3e4 h of stirring, the reaction mixturewas filtered. The filtered part
was poured into excess amount of ice-water mixture. The dark
green crude product was washed with distilled water until the
residue washing water was neutral. Then the final product 4a was
washed with ethanol and dried. Yield: 18mg (46.2%). M.p:>300 �C.
Anal. Calc. (for imide end groups) (C148H142N20O24S16)n (%): C,
57.38; H, 4.62; N, 9.04; S, 16.56. Found: C, 57.76; H, 4.84; N, 9.32; S,
16.09. IR (KBr pellets): 3392 (imide NeH), 3057 (AreH), 2923e2846
(Aliph. CeH), 1772 (sym. C]O), 1720 (asym. C]O), 1599,
1443e1399 (S]O),1408 (CH2eSeC), 1240 cm�1 (AreNeC). 1H NMR
(DMSO): d¼ 7.74 (m,12H, AreH), 7.69 (m,16H, AreTs), 7.38 (m,16H,
AreTs), 7.22 (m, 12H, AreH), 3.86(t, 16H, NeCH2), 2.92(t, 16H,
SeCH2), 2.86(t, 16H, SeCH2), 2.43 (s, 24H, CH3), 1.68 (m, 8H, CH2).
13C NMR (DMSO): d ¼ 150.86, 146.62 (AreC), 144.08, 134.28, 132.58
(AreTseC), 130.34, 127.86 (AreTseCH), 125.14, 124.76, 121.43
(AreCH), 59.32, 58.35 (NeCH2), 35.28, 33.42 (SeCH2), 25.79 (CH2).
MS; m/z ¼ 3098 [M þ 1]þ.

3. Result and discussion

Metal-free and metallophthalocyanine polymers were synthe-
sized by a polymeric tetramerization reaction (Fig. 1). The first
step in the synthetic procedure was to obtain N,N0-(2,20-(propane-
1,3-diylbis(sulfanediyl))bis(ethane-2,1diyl))bis(N-(3,4-dicya-
nophenyl)-4-methylbenzenesulfonamide) 3. This compound was
prepared from 4-nitrophtalonitrile 2 and N,N0-(2,20-(propane-1,3-
diylbis(sulfanediyl))bis(ethane-2,1-diyl))bis(4-methylbenzenesul-
fonamide) 1 in DMF; K2CO3 was used as the base for this
nucleophilic aromatic displacement. In the IR spectrum of 3, the
disappearance of NO2 and NH stretches, along with the
appearance of new bands at 2234 belonging to the C^N group,
are in agreement with the proposed structure. The 1H NMR
spectrum of a CDCl3 solution of 3 was well resolved and showed
that the formation of this macrocycle was accomplished. The
chemical shifts belonging to the deuterium exchangeable NH
groups at d ¼ 5.36 ppm disappear after the condensation reac-
tion between 1 and 2. In the 1H NMR spectrum of 3, the NH
group of compound 1 disappeared as expected. The 13C NMR
spectrum of 3 indicated the presence of nitrile carbon atoms in
3 at 114.70 (C^N), ppm. FAB mass spectrum and elemental
analysis also confirm the formation of desired compound 3.

The metal-free phthalocyanine 4 derived from the correspond-
ing tetracyano compound 3 was synthesized in 2-(dimethylamino)
ethanol under nitrogen in the presence of 1,8-diazabicyclo[5.4.0]
undec-7-ene (DBU) (0.232 g, 1.5 mmol).

Compound 4a was obtained to use its characteristic data for
analysis of the degree of polymerization. For this aim, the metal-
free phthalocyanine was reacted with conc. H2SO4 at room
temperature to give 4a and the cyano end groups of the metal-free
phthalocyanine were converted into imido end groups. In the IR
spectrum of 4 characteristic peaks for phthalocyanines were
observed. The peak at 3436 cm�1 is the characteristic metal-free
phthalocyanine NeH stretching bands. Also, 2214 cm�1 (C^N)
band were present in the spectrum. The mass spectrum of this
compound at m/z ¼ 3078 [M þ K þ H2O]þ support the proposed
formula for this structure. The elemental analysis were confirm
desired compound 4. In the IR spectrum of 4a, the disappearance of
the peak at 2214 cm�1 correspond to the cyano groups of 4 and the
appearance of new peaks at 1772e1720 cm�1 correspond to imido
groups confirm the conversion of the cyano groups into imido
groups. The metallophthalocyanines 5e9 were obtained from tet-
racyano derivative 3 and corresponding anhydrous metal salts
ZnCl2, CuCl2, CoCl2, NiCl2, and PbCl2, respectively, by microwave
irradiation in 2-(dimethylamino)ethanol for 10 min. The metal-free
phthalocyanine was obtained under the same conditions in
the microwave oven but only in low yield (18%) relative to the
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Table 1
Thermal properties of the polymeric phthalocyanines.

Compound M Initial decomposition
temperature in �C

Main decomposition
temperature in �C

4 2H 396 481
5 Zn 304 398
6 Cu 286 360
7 Co 356 451
8 Ni 307 377
9 Pb 371 417

Table 2
The spectral IR data of new compounds.

Compound g (NeH) g (AreH) g (Aliph. CeH) g (C^N) g (S]O)

3 e 3070 2925e2856 2234 1489_1387
4 3436 3058 2921e2851 2214 1465e1158
5 3296 Imide NeH 3062 2921e2857 e 1487e1347
6 3306 Imide NeH 3060 2917e2862 e 1469e1345
7 3304 Imide NeH 3062 2921e2862 e 1470e1348
8 3285 Imide NeH 3060 2919e2857 e 1470e1347
9 3306 Imide NeH 3059 2921e2861 e 1482e1324

Table 3
Electronic spectra of metal-free phthalocyanine and phthalocyanine complexes in
Pyridin.

Compound lmax/nm10�53(mol�1 cm�1)

4 710(5.26) 677(5.30) 615(4.86) 343(5.25)
5 690(5.25) 624(4.65) 358(4.99)
6 689(5.33) 623(4.91) 329(5.08)
7 671(5.44) 608(5.06) 302(5.41)
8 683(5.27) 617(4.94) 305(5.40)
9 721(5.36) 681(5.08) 345(5.19)

Table 4
Some analytical data and physical properties of the new compounds.

Compounds Empirical formula Color Formula wt M.p. (�C) Yield %

3 C37H34N6O4S4 Brown 754 197e199 82
4 (C148H138N24O16S16)n Dark green 3021 >300 37
5 (C148H140N20O24S16Zn)n Dark green 3161 >300 36
6 (C148H140N20O24S16Cu)n Dark green 3159 >300 28
7 (C148H140N20O24S16Co)n Dark green 3154 >300 32
8 (C148H140N20O24S16Ni)n Dark green 3154 >300 35
9 (C148H140N20O24S16Pb)n Dark green 3303 >300 25
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metallophthalocyanines. Therefore 4 was obtained using the
conventional heating conditions reported in the experimental
section. The differences between the infrared spectra of the metal-
free phthalocyanine and the metallophthalocyanine polymers 5e9
is clear from the absence of NeH stretching vibrations at 3436 cm�1

and 1090 cm�1 correspond to the inner core [32,33]. The end
groups of the metal-free phthalocyanine polymer were cyano
groups (2214 cm�1) while the end groups of the metal-
lophthalocyanine polymers were imido groups (1778e1714 cm�1).
The existence of imido groups in the case of metallophthalocyanine
polymers was attributed to the presence of moisture during work-
up. There was little shift to longer wavelength numbers in most of
the IR bands of the metal complexes with respect to the metal-free
analogues [34]. In the mass spectrum of, Zn, Cu, and Co, Ni, Pb
phthalocyanines, the presence of molecular ion peaks atm/z¼ 3180
[Mþ H2Oþ 1]þ,m/z¼ 3159 [M]þ, 3223 [Mþ 3Naþ 1]þ, 3154 [M]þ,
and m/z ¼ 3306 [M þ 3H]þ respectively, confirmed the proposed
structures. The elemental analysis were confirm desired
compounds 5, 6, 7, 8, 9.

Classical molecular weight determinations known in polymer
chemistry are very difficult to conduct. This difficulty is due to the
insolubility or very poor solubility of the polymers in organic
solvents. Additionally, different arrangements of connected
phthalocyanine rings in a polymer must be taken into account.
Several isomers exists for a polymer molecule with a definite
molecular weight. One possible procedure to determine of the
degree of polymerization of polymers is IR spectroscopy [35]. We
determined the degree of polymerization after converting the
cyano end groups of the metal-free phthalocyanine polymer into
imido end groups, due to the relatively good intensity of C]O imide
groups to nitrile groups. After this, the ratios of the absorption
intensities of (AreNeC) of the polymers (w1245 cm�1) to asym.
C]O groups of the imides (w1728 cm�1) were calculated
[compound/log10I1245/I1718: 4a/0.62, 5/0.92, 6/0.90, 7/0.73, 8/0.86,
9/0.88]. The polymerization degrees follow the order:
5 > 6 > 9 > 8 > 7 > 4a. On the other hand, the IR spectrum of 4
shows a low degree of polymerization due to the high intensity of
the nitrile groups [36].

The low solubility of the polymers only enabled spectra to be
recorded in pyridine. The UVeVis absorption spectra of these
polymers exhibit Q and B bands, which are the characteristic bands
for phthalocyanine polymers.

The split Q bands in 4, which are characteristic for metal-free
phthalocyanines, were observed at lmax ¼ 677 and 615 nm (Fig. 2).
These Q band absorptions show the monomeric species with D2h

symmetry and due to the phthalocyanine ring relate to the fully
conjugated 18V electron system [37e39]. In addition, in the UV
region at around 340 nm and called the Soret (or B) band, arising
from the deeper p levels / LUMO transition between an a2u and
the same orbitals and extending to the blue of the visible spectrum,
is generallymuch less intense. The presence of absorption band in 4
in the near UV region at lmax ¼ 343 nm shows Soret region B bands
which have been ascribed to the deeper VeV* levels of LUMO
transitions [40].

The UVevis absorption spectra of metallophthalocyanines 5, 6
(Fig. 2), 7, 8, and 9 (Fig. 3) in pyridine show intense Q absorption at
lmax ¼ 690, 689, 671, 683 and 721 nm, respectively with a weaker
absorptions at 624, 623, 608, 617 and 681 nm, respectively. The
single Q bands in metallo derivatives 5, 6, 7, 8, and 9 are charac-
teristic. This result is typical of metal complexes of substituted and
unsubstituted metallophthalocyanines with D4h symmetry [41]. B
band absorptions of 5, 6, 7, 8, and 9 were observed at lmax ¼ 358,
329, 302, 305 and 345 nm, respectively, as expected.

The thermal behaviour of the metallophthalocyanines were
investigated by TG/DTA. Although the thermal stabilities of
phthalocyanines are well known, the phthalocyanines compounds
are not stable above 286 �C. The initial and main decomposition
temperatures are given in Tables 1e4. The initial decomposition
temperature decreased in the order: 4 > 9 > 7 > 8 > 5 > 6.
4. Conclusions

A tetranitrile monomer 3 was synthesized by nucleophilic
aromatic substitution of N,N0-(2,20-(propane-1,3-diylbis(sulfane-
diyl))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide) 1 onto
4-nitrophthalonitrile 2. The metal-free phthalocyanine polymer 4
was prepared by the reaction of the tetranitrile monomer 3 in the
presence of 2-(dimethylamino)ethanol. Metallophthalocyanine
polymers were prepared by reaction of the tetranitrile 3 with the
chlorides of zinc (II), copper (II), cobalt (II), nickel (II), lead (II), by
microwave irradiation in the presence 2-(dimethylamino)ethanol
at 175 �C, 350 W for 10 min. The thermal stabilities of the phtha-
locyanine compounds were determined by thermogravimetric



E.Ç. Kaya et al. / Dyes and Pigments 85 (2010) 177e182182
analysis. The initial decomposition temperature decreased in the
order: 4 > 9 > 7 > 8 > 5 > 6.
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