

Contents lists available at SciVerse ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Molecular structures of 2-arylaminomethyl-1H-benzimidazole: Spectral, electrochemical, DFT and biological studies

Nour T. Abdel Ghani, Ahmed M. Mansour*

Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt

ARTICLE INFO

ABSTRACT

Article history: Received 17 November 2011 Received in revised form 15 January 2012 Accepted 30 January 2012

Keywords: Benzimidazole NBO TD-DFT PCM Antibacterial In the present work, structural studies on (1H-benzimidazol-2-ylmethyl)-*N*-(4-chloro-phenyl)-amine (L¹) and (1H-benzimidazol-2-ylmethyl)-*N*-(4-iodo-phenyl)-amine (L²) have been done extensively by a variety of physico-chemical techniques. Optimized geometrical structures, harmonic vibrational frequencies, natural bonding orbital (NBO) analysis, and Frontier molecular orbitals (FMO) were obtained by DFT/B3LYP method. TD-DFT calculations help to assign the electronic transitions. The polarizable continuum model (PCM) fails to describe the experimental chemical shift associated with the NH protons as calculated by applying Gauge-invariant atomic orbital (GIAO) method, but a very good correlation between the theoretical and experimental values was achieved by taking into account the specific solute-solvent interactions. DFT calculations showed a good agreement between the theoretical and observed results. These compounds exhibited a high biological activity through the inhibition of the metabolic growth of the investigated bacteria.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Benzimidazole derivatives have been proved to be an important group of fungicides with systemic activity and are well known for their pronounced ability to control a large number of fungal diseases [1,2]. Recently, the emergence of resistance to the major classes of antibacterial agents is recognized as a serious health concern. Particularly, multidrugs-resistant strain of Gram-positive bacterial pathogens is a problem of ever-increasing significance, organisms including methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, as vancomycin-resistant Enterococci [3]. In addition, substituted benzimidazoles, benzoxazoles and some related heterocycles, which are the structural isosters of nucleotides owing to the fused heterocyclic nuclei in their structures, interact easily with biopolymers and possess potential activity with lower toxicities in the chemotherapeutic approach in man [4,5]. Furthermore, benzimidazoles were used as ligands towards metal ions [6] with a variety of biological molecules including ionheme systems, vitamin B₁₂ and its derivatives and several metallo-proteins. These different applications of benzimidazole compounds have attracted many experimentalists and theorists to investigate the structural characteristics of benzimidazole and some of its derivatives.

As a continuation of our recent studies on synthesis, biological activities, structural and theoretical investigations of some substituted benzimidazole [6–8], the main aspect of this study are: (i) synthesis and structural investigation of (1H-benzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L¹) and (1H-benzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L²) (Fig. 1) derivatives by FT-IR, ¹H NMR, UV-vis, and elemental analysis. (ii) The molecular geometries, absorption wavelengths, and vibrational spectra of the title compounds were calculated by applying density functional theory (DFT) computations. (iii) The solvent effect on ¹H NMR data was introduced by applying the polarizable continuum model (PCM). (iv) HOMO, LUMO, and NBO analysis have been used to give more information regarding charge transfer within the molecule.

2. Experimental

2.1. Synthesis

All chemicals used in the preparation and investigation of the present study were of reagent grade (Sigma). The title compounds were prepared by condensation of equimolar quantities of 2-chloromethylbenzimidazole [7] with 4-chloroaniline (L^1) and 4-iodoaniline (L^2) in ethanol in presence of small amount of sodium iodide for about 24 h [8]. Then, the reaction mixtures were neutralized and the solids were separated by cooling, and re-crystallized from ethanol.

^{*} Corresponding author. Tel.: +20 2 0122211253; fax: +20 2 35728843. *E-mail address:* inorganic_am@yahoo.com (A.M. Mansour).

^{1386-1425/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2012.01.080

Fig. 1. Optimized structures of the benzimidazoles (L^{1,2}).

- Data for L¹ (C₁₄H₁₂ClN₃). Color: yellow. MS: M⁺ = 257 (calcd. 257.72). Anal. calcd. %C, 65.18; %H, 4.66; %Cl, 13.77; %N, 16.30. Found: %C, 65.49; %H, 4.59; %Cl, 13.69; %N, 16.13. FT-IR: 3445 (ν (NH)_{sec}), 3055 (ν CH^{ass}/An), 2894 (ν CH₂^{ass}), 2827 (ν CH₂^{ss}), 1597 (ν CC^{ss}/An), and 1309 cm⁻¹ (ν (C–N)_{sec}). ¹H NMR (DMSO): δ 12.21 (1H, s, benzimidazolic NH); δ 7.47, 7.46, 7.13, and 7.10 (4H, m, benzimidazole ring (Bz)); δ 7.08, 7.06, 6.64, and 6.62 (4H, dd, aniline ring (An)), δ 6.45 (1H, t, NH_{sec}), and δ 4.42 (2H, d, CH₂). UV-vis (ethanol): 204, 222, 250, 274, and 280 nm.
- Data for L² (C₁₄H₁₂IN₃). Color: yellow. MS: M⁺ = 349 (calcd. 349.17). Anal. calcd. %C, 48.16; %H, 3.46; %I, 36.34; %N, 12.03. Found: %C, 47.97; %H, 3.69; %I, 35.98; %N, 11.91. FT-IR: 3440 (ν (NH)_{sec}), 3052 (ν CH^{ass}/An), 2875 (ν CH₂^{ass}), 1691 (ν (C=N)), 1588 (ν CC^{ss}/An), and 1308 cm⁻¹ (ν (C–N)_{sec}). ¹H NMR (DMSO): δ 12.25 (1H, s, benzimidazolic NH); δ 7.49, 7.48, 7.14, and 7.12 (4H, m, benzimidazole ring (Bz)); δ 7.36, 7.33, 6.53, and 6.49 (4H, dd, aniline ring (An)), δ 6.50 (1H, t, NH_{sec}), and δ 4.46 (2H, d, CH₂). UV–vis (ethanol): 204, 222, 254, 273 and 280 nm

2.2. Instruments

Elemental microanalyses were performed at the Microanalytical Center, Cairo University. The analyses were repeated twice to check the accuracy of the analyzed data. The mass spectra were recorded with the aid of a SHIMADZU QP-2010 plus mass spectrometer at 70 eV. Infrared spectra were recorded as KBr pellet using FTIR-460 plus, JASCO, in 4000–200 cm⁻¹ region. The ¹H NMR spectra were run at 300 MHz in DMSO-d₆ using Varian-Mercury VX-300 NMR. The UV-vis measurements were carried out using automated spectrophotometer UV-vis SHIMADZU Lambda 4B using 1 cm matched quartz cells. Cyclic voltammetry measurements were performed using a three-electrode configuration cell connected to "EG&G" scanning potentiostat model 372. A Pt disc was used as working electrode and a Pt wire as auxiliary electrode. The reference electrode was Ag/AgCl electrode adjusted to 0.00 V versus SCE. Sample solutions (50 ml) of 10⁻³ M concentration in acetonitrile with 0.1 M NaClO₄·H₂O as supporting electrolyte were used for

the measurements. A potential range of +2000 to -2000 mV, with a scan rate of 100 mV s⁻¹ was used.

2.3. Computational calculations

The gas phase geometries of (1H-benzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L¹) and (1H-benzimidazol-2-ylmethyl)-N-(4-iodo-phenyl)-amine (L²) in the ground state were optimized by DFT/B3LYP method [9] using 6-31G(d) basis set for L¹ and SDD for L² using GAUSSIAN03 [10] program. The main reason for choosing the SDD basis set is its inclusion of relativistic effect that is essential for heavy elements. The optimized geometries were verified by performing a frequency calculation. Frontier molecular orbitals (FMO) were performed at the same level of theory. Vibrational modes were analyzed using GAUSSVIEW software [11]. Based on the optimized geometries, the electronic spectra of the studied compounds were obtained by using time-dependent density functional theory (TD-DFT) [12] method. Net atomic charges had been obtained by the natural bond orbital (NBO) analysis of Weinhold and Carpenter [13]. The ¹H NMR chemical shifts were computed at the B3LYP/6-311 + G(2d,p) (L¹) and SDD (L²) level of theory in the gaseous state by applying Gauge-invariant atomic orbital (GIAO) approach [14] and the values for the ¹H, isotropic were referenced to TMS, which was calculated at the same level of theory. The effect of solvents (DMSO, and CHCl₃) on the theoretical NMR parameters was performed using the polarizable continuum model (PCM).

2.4. Biological activity studies

The antimicrobial activities of the test samples were determined by means of a modified Kirby-Bauer disc diffusion method [15] under standard conditions using Mueller-Hinton agar medium (tested for composition and pH), as described by NCCLS [16]. The antimicrobial activities were carried out using culture of Bacillus subtilis, S. aureus, and Streptococcus faecalis as Grampositive bacteria and Escherichia coli, Pseudomonas aeruginosa, and Neisseria gonorrhea as Gram-negative bacteria. The solution of 100 mg/ml of each compound (studied compounds and standard drug Tetracycline) in DMSO was prepared for testing against bacteria. Centrifuged pelletes of bacteria from a 24 h old culture containing approximately 10⁴-10⁶ CFU (colony forming unit) per ml were spread on the surface of Mueller-Hinton agar plates. Then the wells were seeded with 10 ml of prepared inocula to have 10⁶ CFU/ml. Petri plates were prepared by pouring 100 ml of seeded nutrient agar. DMSO (0.1 ml) alone was used as control under the same conditions for each microorganism, subtracting the diameter of inhibition zone [17] resulting with DMSO, from that obtained in each case. The antimicrobial activities could be determined as a mean of three replicates.

3. Results and discussion

3.1. Vibrational analysis

The theoretical IR spectra of the investigated compounds ($L^{1,2}$) were obtained at DFT/B3LYP level of theory using 6-31G(d) and SDD basis sets, respectively (Fig. 2). All band assignments are presented in Tables 1 and 2. It is well known that the calculated harmonic frequencies by DFT method are usually higher than the corresponding experimental quantities due to the electron correlation approximate treatment, anharmonicity effects and basis set deficiencies, etc. [18]. To compensate these shortcomings, scale factors were introduced and an explanation of this approach was discussed [19]. Two different methods were applied: (i) uniform scaling [19], the scaling factor is 0.963 for B3LYP/6-31G(d) and 0.970 for B3LYP/SDD

Observed and calculated selected frequencies (cm⁻¹) and assignments of the fundamental modes for (1H-benzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L¹).

BBUPPIO-31C(d) 1 3649 3513 3515 $\mu N ^{-} R_{2}$ 3 3445 3562 3430 3410 $\mu N ^{-} R_{2}$ 3 319 3099 3101 $\nu C ^{-} R_{2}$ 4 3219 3099 3101 $\nu C ^{-} R_{2}$ 5 3209 3090 3051 $\nu C ^{-} R_{2}$ 6 3209 3090 3051 $\nu C ^{-} R_{2}$ 7 3204 3085 3065 $\nu C ^{-} R_{2}$ 10 3653 3185 3070 $\nu C ^{-} R_{2}$ 11 2653 3185 3057 3068 $\nu C ^{-} R_{2}$ 12 287 1665 1604 1604 $\nu C _{R_{2}}$ 13 1501 1501 1501 $\nu C _{R_{2}}$ $\nu C _{R_{2}}$ 14 1597 1665 1504 1604 $\nu C _{R_{2}}$ 14 1597 1665 1501 1501 $\nu C $	No.	Exp. frequency	Calculated un-scaled frequency B3LYP	Scaled frequency uniform scaling	Scaled frequency linear regression scaling	Vibrational assignments
			B3LYP/6-31G(d)			
2 3445 3562 3430 3431 whtP/An 4 3213 3009 3101 whtP/An 4 3219 3009 3101 whtP/An 6 3209 3009 3010 whtP/An 6 3209 3009 3010 whtP/An 6 3209 3005 3010 wttP/An 7 3188 3070 3071 wttP/Ma 10 3055 3185 3067 3068 wttP/Ma 11 2894 3000 2893 2890 wttP/Ma 12 2894 3000 2893 2890 wttP/Ma 13 - 1663 1604 1604 wttP/Ma 14 1601 1501 1501 wttP/Ma wttP/Ma 15 1642 1801 1811 wttP/Ma wttP/Ma 16 1534 1451 1451 mtP/Ma mtP/Ma 17 1538 1451 1451 mtP/Ma mtP/Ma 18 1901 1554 1451 mtP/Ma mtP/Ma 191 154 1451 1451 mtP/Ma 192 1302 1302	1		3649	3513	3515	vNH ^{ss} /Bz
3 3221 3101 3102 PCHP An 4 3219 3099 3101 PCHP An 5 3219 3099 3101 PCHP An 6 3219 3099 3101 PCHP An 7 3204 3085 3086 PCHP An 7 3204 3085 3086 PCHP An 10 3055 3185 3087 PCHP An 11 2847 3940 2889 2890 Ch Ph 12 2827 2945 2836 2837 Ch Ph 13 1683 1621 PCC An + PC An + PA PC An + PA 14 1997 1663 1604 1604 PC An + PC An + PC An + PC An 15 161 1571 PC An +	2	3445	3562	3430	3431	vNH ^{ss} /An
4 3219 3099 3101 PCH ³¹ /An 6 3209 3090 3911 PCH ³¹ /R 6 3209 3090 3981 PCH ³¹ /R 8 3197 3078 3079 PCH ³¹ /R 10 3055 3183 3077 3079 PCH ³¹ /R 11 204 3065 3088 PCH ³¹ /R 12 2027 263 263 267 268 13 2027 263 620 1621 PC(Br + PCM/Br + BNH ³ /A 14 1597 166 1621 PC(Br + SNH ³ /B 15 1541 1571 PC(Br + SNH ³ /B 16 1599 1511 1511 BNH ³ /An + δ, CH + PC/N/B 17 1595 1535 1536 BNH ³ /An + δ, CH + PC/N/B 18 1591 1501 BNH ³ /An + δ, CH + PC/N/B 19 154 1481 1481 VC/Br + SNH ³ /An + δ, CH + PC/N/B 21 1431 1497 1415 1415 1416 22 120 123 1372 PC/Br + SNH ³ /An + GH + SNH ³ /An 23 1309 1307 1287 PC/Br + SNH ³ /An + GH + SNH ³ /An +	3		3221	3101	3102	vCH ^{ss} /An
5 219 3099 3101 PCIP*BZ 6 3204 3085 3086 PCIP*BZ 7 3204 3085 3086 PCIP*BZ 9 3188 3070 3071 PCIP*BZ 9 3188 3070 3071 PCIP*BZ 11 2894 3000 2889 2800 CH_P** 12 287 245 2836 2837 CH_P** 13 - 1683 1620 1621 PCIB** 14 150 1501 1501 PCIB** PCIB** 15 164 1861 1641 PCIB** PDFIA** 16 1501 1501 1501 PDFIA** PDFIA** 17 153 1501 1501 PDFIA** PDFIA** 18 1501 1501 1501 PDFIA** PDFIA** 19 153 1501 1501 PDFIA** PDFIA** 20 1337 1372 1372 PDFIA** PDFIA** 21 149 1395 1384 PCIA** PDFIA** 22 1337 1281 1318 PCIA** PDFIA** 23	4		3219	3099	3101	vCH ^{ass} /An
6 3209 3090 3091 PI ^{H^m} /R ² 7 3197 3078 3079 rCH ^m /R ² 8 3197 3078 3079 rCH ^m /R ² 10 3055 3185 3067 3088 rCH ^m /R ² 11 2840 3000 2889 2890 CH ^m /R ² 12 2827 2945 2836 2837 CH ^m /R ² 13 1597 1662 1621 1621 rCC/R ² 14 1597 1662 1631 1571 rC/R ² 15 1591 1591 1501 171 rC/R ² 17 1593 1535 1536 1501 171 18 1591 1591 1501 171 174 19 1544 1486 1487 1871 187 21 1431 1497 1441 1442 PC/R ² 22 1409 1395 1395 1395 1301 23 1431 1497 1415 1415 1415 24 1302 1318 1318 1316 rC/R ² 25 1309 1367 1318 1316 rC/R ² <	5		3219	3099	3101	vCH ^{ss} /Bz
7 304 3065 3066 $\nu CH^{30}/n$ 9 3188 3070 3071 $\nu CH^{30}/n$ 10 2055 3185 3067 3008 $\nu CH^{30}/n$ 11 2894 3000 2889 2890 CH_{11}^{30}/n 12 287 295 2836 2837 CH_{11}^{30}/n 13 163 1620 1631 $\nu C(Rz + R) M R/Z$ 14 1642 1581 1591 $\nu C(Rz + R) M R/Z$ 15 1642 1581 1591 $\nu C(Rz + R) M R/Z$ 16 1501 1535 1535 1507 200/n 17 1538 1537 1507 200/n 200/n $\nu C(Rz + R) M R/Z + N/A) n + 0(L) + \nu C/N RZ 17 1538 1535 1535 1507 200/n 200/n \nu C(Rz + R) M R/Z + N/A) n + 0(L) + \nu C/A n + N/A + N/A) n + 0(L) + \nu C/A + N/A + 0(L) $	6		3209	3090	3091	vCH ^{ass} /Bz
8 3197 3078 3079 νCH*** βe 9 3055 3188 3067 3068 νCH*** 10 3055 3185 3067 3068 νCH*** 11 2897 2945 2836 2837 CH2** 12 2827 2945 2836 2837 CH2** 13 663 1620 1621 vCC/An SNN**/BZ 14 1597 1666 1604 1604 vCC/An SNN**/BZ 16 1531 1576 vCC/An * SNN**/BZ VCC/An * SNN**/BZ VCC/An * SNN**/BZ 17 1631 1570 1571 vCC/An * SNN**/BZ VCC/An * SNN**/BZ 18 1501 1559 1531 1556 VCC/An * SNN**/An * C/An 20 1538 1481 1481 vCC/An * SNN*/An * C/An 21 14170 1415 1415 ACH***/An * SNN*/An * C/An 22 1420 1352 1262 SNN*/An * SNN*/An * SNN	7		3204	3085	3086	vCH ^{ass} /An
9 3188 3070 3071 •ctm*//a 10 3055 3185 3067 3068 vctm*//a 11 2894 3000 2889 2880 Ch,** 12 2827 2945 2836 2837 Ch,** 13 663 1620 1621 vcC(B* r vC(B* p)/(B* c)/(B* c)	8		3197	3078	3079	vCH ^{ass} /Bz
10 3865 3185 3067 3068 $relit*/An 11 2884 3000 2899 2890 Ch_{2}^{arr} 12 2827 2945 2836 2837 Ch_{2}^{arr} 13 1683 1620 1621 PC(B* + CV(B* + BMH*/Bz) 14 1597 1666 1604 1604 PC(An) 15 1631 1570 1571 PC(B* + NR)H_2 PC(An) 16 1631 1570 1571 PC(B* + NR)H_2 PC(B* + NC)An + CC/An + C$	9		3188	3070	3071	vCH ^{ass} /Bz
11 2894 3000 2889 2890 $CP_{1}^{m^{10}}$ 12 2827 2945 2836 2837 $CP_{1}^{m^{10}}$ 13	10	3055	3185	3067	3068	vCH ^{ass} /An
12 2827 2945 2956 2837 $CH_1^{+\pi}$ 13 158 1620 1621 $CC(R++CC(R) + \beta MH^{+}/R_{2})$ 14 1597 1666 1604 1604 $CC(R++CC(R) + \beta MH^{+}/R_{2})$ 16 161 1581 1581 $CC(R++CM) = \beta MH^{+}/R_{2}$ 17 1631 1570 1571 $CC(R++CM) = \beta MH^{+}/R_{2}$ 18 1501 1555 1536 $CC(R++CM) = \beta MH^{+}/R_{2}$ 19 1544 1486 1481 $PM(R+S, CL_{2} + vC(R), DA)$ 20 1338 1481 1481 $PC(R+CM) = \beta MH^{+}/R_{2}$ 21 1431 1470 1415 1455 $ACL_{2} + vC(R+CM) = \beta MH^{+}/R_{2}$ 22 1431 1477 1316 1316 $CC(R+CM) = \beta MH^{+}/R_{2} + C(R+CM) = \beta MH^{+}/R_{2}$ 23 1409 1381 1318 $VC(R+CM) = \beta MH^{+}/R_{2} + C(R+CM) = \beta MH^{+}/R_{2} + C(R+M) = \beta MH^{+}/R_{2} + C(R+$	11	2894	3000	2889	2890	CH ₂ ^{ass}
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	12	2807	2945	2836	2837	CH ₂ ^{ss}
13 100 1	12	2027	1692	1620	1621	$UCC/P_{7} + UCN/P_{7} + QNUSC/P_{7}$
13 130 ² 1000 100 ⁴	13	1507	1666	1604	1604	$\nu CC/\Delta p$
13 1042 1.34 1.34 1.041 1.024 1.041 16 1631 1570 1571 1C(An E NH ² An A) 1.051 17 1395 1501 1516 1536 0.001 MP ² An A) 19 1501 1544 1466 1487 BHI(An + 5, CH_2 + uC)(Rz 19 1544 1466 1487 BHI(An + 5, CH_2 + uC)(Rz 1.001 MP ² An A) 21 1431 1497 1441 1442 uC(An E NHI(Rz + 0CH) 1.001 MP ² An A) 22 140 1415 1415 6.014 MP ² An A) 0.014 MP ² An A) 0.014 MP ² An A) 23 1449 1395 1395 uC(An E NHI(Rz + 0CH) 0.014 MP ² An A) 24 1425 1372 1372 1372 1287 D(H) D(H	14	1337	1642	1504	1591	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15		1642	1581	1581	VCC/BZ+ DNH/BZ
1/1 139 133 1330 1536 $VC(Bz + [NAI]Bz + [NAI]AI = 0, CIA_z + UC[A]Bz + [NAI]AI = 0, CIA_z + UC[AI = [NII]AI = 0, CIA_Z + UC[AI = 0, CIA$	10		1631	1570	1571	\mathcal{V} CC/An + β NH ² /An
18 1501 1501 1501 1601 $\beta NH_A H * 0.(L_A n - 10, L_A + n - 10, L_A + n - 10, L_A + 10, L$	17		1595	1535	1536	ν CC/BZ + β NH/BZ + β NH/An + δ_s CH ₂ + ν CN/BZ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1501	1559	1501	1501	$\beta NH/An + \delta_s CH_2 + \nu CC/An$
20	19		1544	1486	1487	$\beta NH/An + \delta_s CH_2$
21 1431 1497 1441 1442 $\nu CC/Bz$ (boat shape) 23 1470 1415 1415 $\delta_{CL} + \nu C - NH/Bz$ 23 1449 1395 1392 $\beta NH/Bz + \nu CC/Bz$ 24 1369 1318 1372 $\beta NH/Bz + \nu CC/Bz$ 25 1369 1318 1318 $\nu CC/Ar + \beta NH/Bz + \omega CH_2$ 26 1309 1367 1316 1316 $\nu CC/Ar + \beta NH/Bz + \omega CH_2$ 26 1307 1333 1287 $\beta CH/Ar$ $\rho CH/Ar$ 28 1270 1333 1283 1287 $\beta NH/Bz + \beta CH/An + 0CH_2$ 30 1288 1211 1212 $\beta CH/Sz + \beta CH/An + 0CH_2$ 31 128 1211 1202 $\tau CH_2 + \beta NH/Bz + \beta CH/An + 0CH_2$ 33 1207 1162 1162 $\beta CH^{MSS}/An + \beta NH/Bz + \beta CH/An + 0CH_2 - NH/An + 0AH_2 34 1115 1165 1121 1120 \beta CH^{MSS}/An + 0CH_2 - NH/An + 0AH_2 35 1114 1011 1014 \beta CH^{MSS}/An + 0CH_2 - NH/An + 0AH_2 37 1088 136 1093 $	20		1538	1481	1481	ν CC/An + β NH/An + ω CH ₂
22 1470 1415 1415 ξ_{13} $\xi_{CH_2} + \nu C_NH_1Bz$ 23 1449 1395 1295 $\nu CC_NB + \nu CC_N + BNH_1Bz + NH_1An + \omega CH_2$ 24 1369 1367 1318 1318 $\nu CC_(An + \mu N-R) + BNH_1Bz + \omega CH_2$ 26 1309 1367 1316 1318 $\nu CC_(An + \mu C-NH_1An + \omega CH_2)$ 27 1337 1287 1283 $\beta CH_1An + \omega CH_2$ 29 1290 1242 1243 $\beta CH_1An + \omega CH_2$ 29 1258 1211 1211 $\tau CH_2 + \beta NH_1Bz + \beta CH_1An + \omega CH_2$ 31 1248 1201 1201 $\beta CH^{1484} (An + \omega CH_2 + M_1AB)$ 32 1184 1216 1170 $\beta CH^{1484} (An + 6N + M_1Bz + \beta CH_1An + M_1Bz + \beta CH_1An + M_1Bz + \beta CH^{1484} (An + M_1B)$ 33 1115 1165 1121 1121 $\beta CH^{1484} (Mn + \omega CH_2 - M_1An + \beta M_1Bz + \beta CH_1An + \beta M_1Bz + \beta CH_1An + M_1Bz + M_1An +$	21	1431	1497	1441	1442	vCC/Bz (boat shape)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22		1470	1415	1415	$\delta_s CH_2 + \nu C - NH/Bz$
24 1425 1372 1372 βhH/βz + 0C/βz + βNH/An + oCH2 25 1309 1367 1316 1318 vC/An + pC-NH/An 26 1309 1367 1316 1316 vC/An + pC-NH/An 27 1337 1287 1287 βCH/Bz + βCH/An + oCH2 28 1270 1333 1283 1283 BCH/Bz + βCH/An + oCH2 29 1290 1242 1242 BH/Bz + BCH/An + oCH2 30 1258 1211 1211 CH ₂ + βH/Bz + βCH/An 31 1268 1201 1202 rCH ₃ 32 1184 1216 1171 1170 BCH ³⁵⁵ /An + βNH/Bz - βCH ³⁵⁵ /Bz 33 1207 162 1162 BCH ³⁵⁵ /An + βNH/Bz - βCH ³⁵⁵ /Bz 34 1105 1121 1121 BCH ³⁵⁵ /Ba - BCH ³⁵⁵ /Bz 35 1115 1165 1121 101 BCH ³⁵⁵ /Ba - BCH ³⁵⁵ /Ba - BCH ³⁵⁵ /Bz 36 109 1046 1007 1006 BCH ³⁵⁵ /An + DCH ₂ -NH/An + BNH/Bz 37 1088 136 1003 1004 BCH ³⁵⁵ /An + DCH ₂ -NH/An 38 1019 1042 1003 1005 BCH ³⁵⁵ /An + DCH ₂ -NH/An 39 1024	23		1449	1395	1395	ν CC/Bz + ν CC/An + β NH/Bz + β NH/An
25	24		1425	1372	1372	β NH/Bz + ν CC/Bz + β NH/An + ω CH ₂
26 1309 1367 1316 1316 νCC/An + νCNH/An 27 1337 1287 1287 βCH/An + νC-H2 28 1270 1333 1283 1283 βCH/An + νC-H2 29 1290 1242 1242 βCH/An + νC-H2 29 1288 1211 1212 PKH/Ba + βCH/An + νC-H2 30 1288 1201 1202 rCH2 + βNH/Ba + βCH/An 31 1287 1162 162 GCH*ssr/An + βNH/Bz 32 1184 1216 1171 1162 GCH*ssr/An + βNH/Bz 34 107 1162 1183 GCH*ssr/An + βNH/Bz + βCH*ssr/Bz 35 1115 1165 121 121 GCH*ssr/An + βNH/Bz + βCH*ssr/Bz 36 115 1162 1162 GCH*ssr/An + βNH/Bz + βCH*ssr/Bz 37 1088 1136 1093 9CH*ssr/An + βNH/Bz + βCH*ssr/Bz 38 1019 1046 1007 1006 GCH*ssr/An + CH2 - NH/An + NH/Bz 39 1019 1046 1007 1006 GCH*ssr/An + CH2 - NH/An 39 1019 1046 986 985 Rorsion/Bz 40 1024 986 986 986	25		1369	1318	1318	ν CC/An + β NH/Bz + ω CH ₂
27 1337 1287 1287 βCH/An 28 1270 1333 1283 1283 βCH/Bz + βCH/An + ωCH2 28 1290 1242 1242 βMI/An + ωCH2 30 1258 1211 1211 7CH2 + βMI/Bz + βCH/An 31 1248 1201 1202 7CH2 32 1184 1216 1171 1170 βCH ^{ssc} /An + βMI/Bz + βCH ^{ssc} /Bz 33 1184 1216 1171 1170 βCH ^{ssc} /An + βMI/Bz + βCH ^{ssc} /Bz 34 1183 1199 1188 βCH ^{ssc} /An + βMI/Bz + βCH ^{ssc} /Bz 35 1115 1165 1121 1121 βCH ^{ssc} /An + βMI/Bz + βCH ^{ssc} /Bz 36 1184 1010 1014 βCH ^{ssc} /An + μCH2 - MI/An + βMI/Bz 37 1088 1136 1093 1093 βCH ^{ssc} /An + μCH2 - MI/An + βMI/Bz 38 1019 1046 1007 1006 βCH ^{ssc} /An + μCH2 - MI/An 38 1019 1042 003 003 ρCH2 41 1020 982 981 Rtorsion/Bz 42 917 975 938 936 96 43 806 964 896 966 966 <td>26</td> <td>1309</td> <td>1367</td> <td>1316</td> <td>1316</td> <td>νCC/An + νC—NH/An</td>	26	1309	1367	1316	1316	ν CC/An + ν C—NH/An
28 1270 1333 1283 1283 βCH/Bz + βCH/An + ωCH2 29 1290 1242 1242 βNH/An + ωCH2 30 1258 1211 1211 CH2 + βNH/Bz + βCH/An 31 1248 1201 1202 rCH ₂ 32 1184 1216 1162 βCH ⁸⁵⁵ /An + βNH/Bz 34 1207 1162 1162 βCH ⁸⁵⁵ /An + βNH/Bz 35 1115 1165 1121 1218 βCH ⁸⁵⁵ /Bz 36 1144 1001 1003 βCH ⁸⁵⁵ /Bz βCH ⁸⁵⁵ /Bz 37 1088 1136 1093 1003 pCH2 38 1019 1042 1003 1003 pCH2 41 1020 982 981 Rtrigd/An 42 917 975 938 936 94 42 917 975 938 936 94 43 806 942 907 906 γCH/An	27		1337	1287	1287	βCH/An
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1270	1333	1283	1283	β CH/Bz + β CH/An + ω CH ₂
30 1258 1211 1211 $TCH_2 + \beta NH/Bz + \beta CH/An$ 31 1248 1201 1202 TCH_2 32 1184 1216 1171 1170 $BCH^{ssc}/An + \beta NH/Bz + \beta CH^{ssc}/Bz$ 33 1207 1162 1162 $BCH^{ssc}/An + \beta NH/Bz + \beta CH^{ssc}/Bz$ 34 1183 1139 1138 BCH^{ssc}/Bz 35 1115 1165 1121 1121 BCH^{ssc}/Bz 36 1144 1001 1001 $BCH^{ssc}/An + \nu CH_2 - NH/An + \beta NH/Bz$ 36 119 1046 1003 $BCH^{ssc}/An + \nu CH_2 - NH/An$ 37 1088 136 1093 1003 PCH_2 38 1019 1046 1007 1006 $BCH/Bz + \rho CH_2$ 39 1024 986 985 Rtorsion/Bz 41 1020 982 981 Rtrigd/An 42 917 975 938 936 896 43 866 942 907 906 $\gamma CH/Bz$ 44 911 896	29		1290	1242	1242	$\beta NH/An + \omega CH_2$
31124812011202 τCH_2 $\mu CVFL = \mu CVFL$ 321184121611711170 $\beta CH^{4557}/An + \beta NH/Bz$ 33120711621162 $\beta CH^{4557}/An + \beta NH/Bz + \beta CH^{85.5r}/Bz$ 34118311391138 $\beta CH^{4557}/An + pCH_2 = NH/An + \beta NH/Bz$ 351115116511211121 $\beta CH^{4557}/Bz$ 36114411011101 $\beta CH^{4557}/Bz$ 371088113610931093 $\beta CH^{4557}/Bz$ 381019104610071006 $\beta CH[Bz + \rho CH_2]$ 39104210031003 ρCH_2 401024986985Rtorsion/Bz411020982981Rtrigd/An42917975938938 $\gamma CH/Bz$ 38806942907906 $\gamma CH/An$ 43806942907906 $\gamma CH/An$ 74493189689682579479380877870467767777744911877876Rtorsion/Bz45657669644643 $\nu C-C$ 46648624623Rtrigd/An47613631607607Rtrigd/An48438443426425 $\gamma NH/An$	30		1258	1211	1211	$\tau CH_2 + \beta NH/Bz + \beta CH/An$
32 1184 1216 1171 1170 $\beta CH^{3xx}/An + \beta NH/Bz$ 33 1207 1162 1162 $\beta CH^{3xx}/An + \beta NH/Bz + \beta CH^{3xx}/Bz$ 34 1183 1139 1138 $\beta CH^{3xx}/Bz + \beta CH_{2x}/Bz$ 35 1115 1165 1121 1121 $\beta CH^{3xx}/Bz + \beta CH_{2x}/Bz$ 36 1144 1011 101 $\beta CH^{3xx}/Bz + \beta CH_{2} - NH/An + \beta NH/Bz$ 38 1019 1046 1003 $\beta CH^{3xx}/An + \nu CH_{2} - NH/An 38 1019 1046 1007 1006 \beta CH/Bz + \rho CH_{2} - NH/An 39 1042 1003 1003 \rho CH_{2} 41 1024 986 985 Rtorsion/Bz 41 1020 982 981 Rtorsion/Bz 41 1020 986 986 986 42 917 975 938 938 \gamma CH/Bz 43 806 942 907 906 \gamma CH/An 44 911 877 876 Rtorsion/Bz 45 657 669 $	31		1248	1201	1202	τCH_2
101102116211621162 $DCH^{SSS}/An + BM/Bz + BCH^{SSS}/Bz$ 34118311391138 BCH^{SSS}/Bz 351115116511211121 $BCH^{SSS}/An + \nu CH_2 - NH/An + \beta NH/Bz$ 36114411011101 $BCH^{SSS}/An + \nu CH_2 - NH/An + \beta NH/Bz$ 371088113610931093 $BCH^{SSS}/An + \nu CH_2 - NH/An + \beta NH/Bz$ 381019104610071006 $BCH^{SSS}/An + \nu CH_2 - NH/An$ 39104210031003 ρCH_2 401024986985Rtorsion/Bz411020982981Rtrigd/An42917975938938 $\gamma CH/Bz$ 93189689689686283082943806942907906744931896896825794793808778777704677771704677771704677771704677771704677771704677771704677771704677771744911877876744911877876745657669644643 $\nu C - CI$ 45657657669648624623Rtrigd/An47613631607	32	1184	1216	1171	1170	$\beta CH^{ss,sc}/An + \beta NH/Bz$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33		1207	1162	1162	$\beta CH^{ss,sc}/An + \beta NH/Bz + \beta CH^{ss,sc}/Bz$
35 1115 1165 1121 1121 βCH ^{35,57} /An + νCH ₂ —NH/An + βNH/Bz 36 1144 1101 1101 βCH ^{35,57} /An + νCH ₂ —NH/An + βNH/Bz 37 1088 1136 1093 1093 βCH ^{35,57} /An + νCH ₂ —NH/An 38 1019 1046 1007 1006 βCH ^{35,57} /An + νCH ₂ —NH/An 39 1042 1003 1003 ρCH ₂ 40 1024 986 985 Rtorsion/Bz 41 1020 982 981 Rtrigd/An 42 917 975 938 938 γCH/Bz 42 917 975 938 938 γCH/Bz 43 806 942 907 906 γCH/An 43 806 942 907 906 γCH/An 44 931 896 896 896 45 657 669 644 633 γCH/An 45 657 669 644 643 γC-Cl 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/An 48 438 443 426 425 γNH/An	34		1183	1139	1138	BCH ^{ss,sc} /Bz
35 1113 1121	35	1115	1165	1121	1121	$\beta CH^{SS,SC} / \Delta n + \nu CH_{2} - NH / \Delta n + \beta NH / Bz$
37 1088 1136 1101 1101 βCH*3C/An+νCH2NH/An 38 1019 1046 1007 1006 βCH*3C/An+νCH2NH/An 39 1042 1003 1003 ρCH2 40 1024 986 985 Rtorsion/BZ 41 1020 982 981 Rtrigd/An 42 917 975 938 938 γCH/BZ 43 862 830 829 862 830 43 806 942 907 906 γCH/An 44 931 896 896 896 744 931 896 896 896 45 657 669 677 677 44 911 877 876 Rtorsion/BZ 44 911 877 876 Rtorsion/BZ 44 911 877 677 77 44 911 877 876 Rtorsion/BZ 44 911 877 673 77 44 911 877 76 Rtorsion/BZ 44 911 877 77 7 44 911 877 673 <td>26</td> <td>1115</td> <td>1144</td> <td>1121</td> <td>1101</td> <td>$\beta C U^{SS,SC} / D_{7}$</td>	26	1115	1144	1121	1101	$\beta C U^{SS,SC} / D_{7}$
J_1 1033 1033 1033 1033 1047 1047 1047 1047 1047 1047 1066 $\beta CH^+ Bz + \rho CH_2$ βCH_2 39 1042 1003 1003 ρCH_2 α <	27	1099	1126	1002	1002	$\beta C U s s s c / \Delta p + v C U - N U / \Delta p$
36 1019 1040 1007 1006 βCH/2+βCH2 39 1042 1003 1003 ρCH2 40 674 649 648 41 1020 982 981 Rtorsion/Bz 42 917 975 938 938 γCH/Bz 43 862 830 829 862 806 43 806 942 907 906 γCH/An 43 806 942 907 906 γCH/An 44 911 876 896 896 896 44 911 877 677 777 704 677 677 44 911 877 876 Rtorsion/Bz 701 1001	20	1000	1046	1095	1095	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1019	1040	1007	1000	pcn/bz+pcn ₂
40 1024 986 985 Rtorsion/Bz 41 1020 982 981 Rtrigd/An 42 917 975 938 938 γCH/Bz 931 896 896 862 830 829 43 806 942 907 906 γCH/An 744 931 896 896 942 808 729 729 729 43 806 942 907 906 γCH/An 744 931 896 896 896 425 794 793 777 704 677 677 44 911 877 876 Rtorsion/Bz 744 45 657 669 644 643 νC—Cl 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/Za 48 438 443 426 <	29		1042	1003	1005	ρсп ₂
401024986985Rtorston/BZ411020982981Rtrigd/An42917975938938 γ CH/Bz93189689686282986283082975872972943806942907906 γ CH/An7449318968969680877877770467770467767770467744911877876Rtorsion/Bz45657669644643 ν CCl46648624623Rtrigd/An47613631607607Rtrigd/Bz48438443426425 γ NH/Bz49499579556 γ NH/An	10		674	649	048	
411020982981Rtrigd/An42917975938938 γ CH/Bz93189689686283082975872972974493189689680877877170467767744911877876704677CC-Cl4565766964464346648624623Rtrigd/An476136316076074843844342642549499579556 γ NH/An	40		1024	986	985	Rtorsion/BZ
42 917 975 938 938 938 $\gamma CH/BZ$ 931 896 896 862 830 829 758 729 729 $\gamma CH/An$ 744 931 896 896 808 778 777 704 677 677 44 911 877 876 Rtorsion/Bz 45 657 669 644 643 $\nu C-Cl$ 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/An 48 438 443 426 425 $\gamma NH/Bz$ 49 499 579 566 $\gamma NH/An$	41		1020	982	981	Rtrigd/An
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	917	975	938	938	γCH/Bz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			931	896	896	
758 729 729 43 806 942 907 906 γ CH/An 744 931 896 896 896 825 794 793 808 778 777 704 677 677 44 911 877 876 45 657 669 644 643 46 633 ν CCl 46 631 607 607 47 613 631 607 607 48 438 443 426 425 499 579 556 γ NH/An			862	830	829	
43 806 942 907 906 γ CH/An 744 931 896 896 825 794 793 808 778 777 704 677 677 44 911 877 876 Rtorsion/Bz 45 657 669 644 643 ν CCl 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/An 48 438 443 425 γ NH/Bz 49 499 579 556 γ NH/An			758	729	729	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	806	942	907	906	γCH/An
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		744	931	896	896	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			825	794	793	
704 677 677 44 911 877 876 $Rtorsion/Bz$ 45 657 669 644 643 ν CCl 46 648 624 623 $Rtrigd/An$ 47 613 631 607 607 $Rtrigd/Bz$ 48 438 443 426 425 γ NH/Bz 49 499 579 556 γ NH/An			808	778	777	
44 911 877 876 Rtorsion/Bz 45 657 669 644 643 νC-Cl 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/Bz 48 438 443 426 425 γNH/Bz 49 499 579 556 γNH/An			704	677	677	
45 657 669 644 643 νCCl 46 648 624 623 Rtrigd/An 47 613 631 607 607 Rtrigd/Bz 48 438 443 426 425 γNH/Bz 49 499 579 556 γNH/An	44		911	877	876	Rtorsion/Bz
46648624623Rtrigd/An47613631607607Rtrigd/Bz48438443426425γNH/Bz49499579556γNH/An	45	657	669	644	643	vC—Cl
47 613 631 607 607 Rtrigd/Bz 48 438 443 426 425 γNH/Bz 49 499 579 556 γNH/An	46		648	624	623	Rtrigd/An
48 438 443 426 425 γNH/Bz 49 499 579 556 γNH/An	47	613	631	607	607	Rtrigd/Bz
49 499 579 556 vNH/An	48	438	443	426	425	vNH/Bz
	49	499	579		556	vNH/An

R: ring; ss: symmetric stretching; ass: asymmetric stretching; ν : stretching; β : in-plane bending; γ : out-of-plane bending; δ_s : scissoring; ω , wagging; τ : twisting; ρ : rocking; trig: trigonal; trigonal; trigonal deformation.

(ii) linear regression method [19], in this method, the plot of the calculated frequencies versus their experimental values resulted in a straight line, whose equation was used to correct the calculated frequencies ($\nu_{calcd.}$) (Fig. 3).

Benzimidazole derivatives (L^{1,2}) have a strong intermolecular hydrogen bond [8], between the pyridine-type nitrogen, and the benzimidazolic NH group, which makes the IR spectra show a broad absorption band in the region 3500–2200 cm⁻¹. It is not surprising to find this effect since benzimidazole and imidazole derivatives, possessing free imino hydrogen, are known to be capable of associating through hydrogen bond formation [20]. The scaled values at 3513 and 3569 cm⁻¹ are assigned to the stretching mode of the benzimidazolic NH group in the benzimidazoles ($L^{1,2}$). The presence of a sharp band at 3445 (L^1) and 3440 cm⁻¹ (L^2) indicated the existence of free secondary amino group (NH_{sec}) and these values deviate from the theoretically scaled modes, 3430 and 3471 cm⁻¹, respectively. This discrepancy may be justified on the basis that the calculations were performed on a single molecule in the gaseous state, whereas packing molecules with intermolecular interactions are treated in the experimental measurements.

Table 2

Observed and calculated selected frequencies (cm⁻¹) and assignments of the fundamental modes for (1H-benzimidazol-2-ylmethyl)-*N*-(4-iodo-phenyl)-amine (L²).

No.	Exp. frequency	Calculated un-scaled frequency	Scaled Frequency Uniform scaling	Scaled frequency linear regression scaling	Vibrational assignments
		B3LYP/SDD			
1		3680	3569	3543	vNH ^{ss} /Bz
2	3440	3579	3471	3446	νNH ^{ss} /An
3		3239	3141	3118	vCH ^{ss} /Bz
4		3234	3136	3113	vCH ^{ss} /An
5		3230	3133	3109	vCH ^{ass} /An
6		3225	3128	3105	vCH ^{ass} /Bz
7		3210	3113	3090	vCH ^{ass} /Bz
8		3209	3112	3089	vCH ^{ass} /An
0		2109	2102	2070	
5 10	2052	2104	2008	2075	VCII /DZ
10	2022	3194	2000	2073	
11	2875	2989	2899	2877	CH ₂ ass
12	1001	2967	28//	2856	CH ₂ ³³
13	1691	1675	1624	1612	ν CC/Bz + ν CN/Bz
14	1588	1653	1603	1591	νCC/An
15		1635	1585	1573	ν CC/Bz + β NH ^{sc} /Bz
16		1612	1563	1551	ν CC/An + β NH ^{sc} /An
17		1580	1532	1520	ν CC/Bz + β NH/Bz + β NH/An + δ_s CH ₂
18		1547	1500	1488	$\beta NH/An + \delta_s CH_2$
19	1494	1533	1487	1475	$\beta NH/An + \delta_s CH_2$
20		1516	1470	1459	ν CC/An + β NH/An + ω CH ₂
21		1513	1467	1456	$\nu CC/Bz + \nu CN/Bz$
22	1425	1480	1435	1424	vCC/Bz
22	1425	1400	1402	1301	$\delta CH_{2} + \mu C - NH/B7$
23		1/22	1200	1270	$\nu_{\rm SCH2} + \nu_{\rm CC}/\Lambda_{\rm D} + \Omega_{\rm NH}/\Omega_{\rm Z}$
24		1407	1390	1373	VCC/DZ + VCC/AII + DNII/DZ
25	1200	1427	1384	1373	$VCC/B2 + VCC/AII + DNH/AII + \omegaCH_2$
26	1308	1377	1335	1325	$\nu CC/An + \nu CN/BZ$
27		1340	1299	1289	BCH/An
28	1268	1325	1285	1275	βCH/An + βCH/Bz + βNH/An
29	1223	1290	1251	1241	βCC/Bz+βCH/Bz
30		1249	1211	1201	τCH_2
31		1248	1210	1201	βCH/Bz + βNH/Bz
32		1229	1192	1182	$\beta CH^{ss,sc}/An + \beta NH/Bz$
33		1193	1157	1148	βCH ^{ss,sc} /Bz
34	1119	1166	1131	1122	$\beta CH^{ss,sc}/An + \nu CH_2$ - NH
35		1140	1105	1096	BCH ^{ss,sc} /Bz
36		1134	1099	1091	$\beta CH^{ss,sc}/An + \nu CH_2 - NH$
37	1018	1049	1017	1009	OCH ₂
57	1010	676	655	650	penz
20	002	1024	1002	004	Ptorsion/Pz
20	992	1034	1002	095	wCU/Bz
29	0//	1024	995	965	YCH/DZ
		983	953	945	
		897	870	862	
		799	775	768	
		786	762	756	
40		1009	978	970	Rtorsion/Bz
41		1004	973	966	Rtrigd/An
42	801	995	965	957	γCH/An
	743	976	946	939	
	497	851	825	818	
		836	810	804	
		722	700	694	
		521	505	500	
		121	411	407	
42		424	411	-107	Dtrigd/Da
43		908	880	8/3	KTIIGO/BZ
44		647	627	622	Ktrigd/An
		626	607	601	Para deformation of aniline ring
45	575	603	584	579	γNH/Bz
46		562	545	540	γNH/An
47		302	292	289	νC-I

R: ring; ss: symmetric stretching; ass: asymmetric stretching; ν : stretching; β : in-plane bending; γ : out-of-plane bending; δ_s : scissoring; ω : wagging; τ : twisting; ρ : rocking; trig: trigonal; trigonal; trigonal deformation.

The band at 1691 cm⁻¹ in the p-I derivative (L²) is assigned to υ (C=N) [21] and is slightly deviated from the un-scaled calculated mode, 1674 cm⁻¹. It is possible to notice that in the latter range, the scaling is not necessary, as already pointed by Agathabay et al. [22] and Miranda et al. [23]. However, in the p-Cl derivative, this band is overlapped with the aromatic C=C bands in the same region under the effect of the intermolecular hydrogen bond. The theoretical value at 1683 cm⁻¹ (L¹) is assigned to υ (C=N). Theoretically,

the benzimidazoles L^{1,2} give rise to eight C—H aromatic stretching mode of vibration corresponding to the presence of eight aromatic C—H bonds as shown in Tables 1 and 2.

For assignment of CH_2 group frequencies theoretically, six fundamentals can be associated to each CH_2 group [24]. The bands observed at 2889 and 2836 cm⁻¹ in L¹ derivative are ascribed to CH_2 asymmetric and symmetric stretching vibration. Infrared bands established at 1535, 1481, 1201, and 1003 cm⁻¹ are attributed to

Fig. 2. Experimental and theoretical (B3LYP/6-31G(d)) FT-IR spectra of benzimidazole (L¹).

 $\delta_s CH_2$ (scissoring), ωCH_2 (wagging), τCH_2 (twisting), and ρCH_2 (rocking) vibration modes, respectively. For benzimidazole (L²), the IR bands observed at 2889, 2877, 1532, 1470, 1211, and 1017 cm^{-1} are unambiguously assigned to CH_2^{ass} ; $CH_2^{ss}, \, \delta_s CH_2, \, \omega CH_2, \, \tau CH_2,$ and ρCH_2 , respectively. Other vibration modes are tabulated in Tables 1 and 2. The RMS error of the frequencies between the un-scaled and experimentally observed in benzimidazole (L¹) was found to be 86 cm^{-1}. After scaling, the RMS error is found to be 13 cm^{-1}.

3.2. ¹H NMR spectral analysis

In order to provide an unambiguous assignment of ¹H NMR spectra of the studied compounds, we undertook a series of NMR calculations using GIAO approximation, and the results of these calculations are shown in Table 3. Two models have been used for assessing the influence exerted by solvent on the NMR spectra of

Fig. 3. The linear regression between the experimental and the theoretical DFT predicted wavenumbers (cm^{-1}) for the p-Cl benzimidazole derivative (L^1) using B3LYP/6-31G(d) method.

the given compound. The first is the polarizable continuum model (PCM) [25] provided by *GAUSSAIN03* with DMSO and chloroform as solvents (UFF radii were used to obtain molecular cavity). Molecular clusters, as microscopic model for the environment, have also been used by placing two DMSO molecules near the NH groups in the studied compounds. In these two models, the ¹H NMR chemical shifts were computed at the DFT/B3LYP/6-311 + G(2d,p) and SDD levels of theory for the benzimidazoles (L^{1.2}), respectively. Results of linear regression fit between experimental and calculated chemical shifts (¹H) performed for the structures tested are also included in Table 3.

Experimentally, the benzimidazoles (L^{1,2}) showed a broad singlet signal at 12.21 and 12.25 ppm [6], respectively, due to the benzimidazolic NH proton (Fig. 4). The triplet signal at 6.45 and 6.50 ppm is attributed to the secondary amino group, whereas the doublet signal at 4.42 and 4.46 ppm is assigned to the CH₂ protons in L^{1,2}. For benzimidazole L¹, the protons of the aniline ring give rise to four-line pattern at 6.64 and 6.62 ppm for protons in the ortho-position with respect to secondary amino group, whereas the protons at 7.08 and 7.06 ppm are assigned to aromatic protons in the ortho-position with respect to chloro atom. The signals at 7.47, 7.46, 7.13, and 7.10 ppm are assigned to the aromatic protons of the benzimidazole ring. Similar, L² has the same assignments for the aromatic protons as L¹ at 7.36, 7.33, 6.53, 6.49 and 7.49, 7.48, 7.14, 7.12, respectively.

The ¹H chemical shifts of all protons in the investigated compounds except the imidazolic and the secondary amino protons, (H23 and H26) (L^1) and (H22 and H25) (L^2) , are in a good agreement with the theoretically computed values as calculated by the PCM model (Table 3). The regression coefficient between the calculated and the experimental chemical shifts is improved in presence of DMSO as a solvent rather than in the gaseous state. However, the chemical shifts of the NH protons remain unacceptable apart from the experimental values, being obviously that the chemical shifts associated with these protons are not correctly described by continuum model. Thus, it is clear that the PCM model fails in reproducing the experimental findings for the hydrogen-bonded protons and specific solute-solvent interactions are expected to completely explain the ¹H NMR spectra of the studied compounds [26]. For this purpose, we optimized and then calculated the NMR spectra of the p-Cl and p-I molecules with two DMSO molecules. As shown in Table 3, the chemical shift of the benzimidazolic NH proton is in a very good agreement with the theoretical computed value revealing that some sort of interaction occurs between the studied compound and solvent molecules and this will be confirmed later by studying the electronic spectra of these compounds in DMSO. Therefore, the hydrogen bonding interaction of these compounds, is better reproduced by the second model rather than using the polarizable continuum model (PCM) solvation model.

3.3. Electronic absorption

3.3.1. Band assignment

The electronic spectra of the benzimidazoles (L^{1,2}) displayed five absorption bands in ethanol. The first two bands at 204 and 222 nm may be assigned to medium and low energy $\pi - \pi^*$ transitions within the phenyl rings of the aniline and benzimidazole moieties, respectively [27]. In benzimidazole ring, three kinds of transitions are possible: (i) $n - \pi^*$, (ii) $\pi - \pi^*$, and (iii) charge-transfer. However, it is well established that the $n - \pi^*$ transition is not observed in the benzimidazole compounds, although the system has a lone pair of electrons on the tertiary nitrogen atom [28]. Therefore, the bands at 250, 274, and 280 nm (L¹) and 254, 273 and 280 (L²) may be assigned to $\pi - \pi^*$ transitions in the benzimidazole ring. Moreover, the lowest energy bands in the studied compounds appear doublet due to the presence of a tautomeric

Table 2	Та	bl	e	3
---------	----	----	---	---

Experimental and calculated ¹H NMR chemical shifts for the title compounds (L¹⁻²).

L ¹						L ²					
Atom	δ Calcd.	δ Exp.	Atom	δ Calcd.				δ Exp.			
	Gaseous	CHCl ₃	DMSO	L ¹ -DMSO ^a			Gaseous	DMSO	CHCl ₃	L ² -DMSO ^a	
H ₁₉	8.15	8.09	8.08	7.87	7.47	H ₁₈	8.25	8.24	8.26	7.78	7.15
H ₂₀	7.61	7.58	7.60	7.49	7.10	H ₁₉	7.75	7.89	7.85	7.48	7.14
H ₂₁	7.59	7.62	7.66	7.57	7.13	H ₂₀	7.75	7.95	7.89	7.51	7.49
H ₂₂	7.63	7.81	7.92	7.72	7.46	H ₂₁	7.51	7.96	7.81	7.56	7.48
H ₂₃	8.16	8.76	9.01	13.03	12.21	H ₂₂	7.56	8.57	8.26	12.22	12.25
H ₂₄	4.42	4.66	4.76	4.59	4.42	H ₂₃	4.14	4.44	4.34	4.38	4.46
H ₂₅	4.42	4.46	4.51	4.20	4.42	H ₂₄	4.14	4.44	4.34	3.76	4.46
H ₂₆	5.62	5.62	5.62	7.33	6.45	H ₂₅	5.88	5.90	5.92	7.14	6.50
H ₂₇	7.02	7.16	7.21	7.67	7.08	H ₂₆	6.98	7.24	7.17	7.99	7.36
H ₂₈	7.51	7.40	7.42	7.37	6.64	H ₂₇	7.50	7.60	7.57	7.31	7.33
H ₂₉	7.38	7.60	7.64	7.48	7.06	H ₂₈	7.48	7.64	7.58	7.39	6.53
H ₃₀	6.33	6.73	6.84	6.76	6.62	H ₂₉	6.37	6.84	6.68	6.69	6.49
R ²	0.9326	0.9706	0.9759	0.9711		R ²	0.8777	0.9152	0.9052	0.9161	

^a These values were obtained after optimization of L^{1,2}·2DMSO in the gaseous state.

structure [29]. This phenomenon is supported by comparing our spectra with the spectrum of 1-methyl-2-phenyl-benzimidazole [28], where this fine structure is lost. To explain the effect of the substituent on the absorption spectra of the benzimidazoles ($L^{1,2}$), the unsubstituted derivative [30], which has five absorption bands in ethanol at 204, 222, 242, 274 and 280 nm was taken as a reference. The introduction of electron-attracting substituents (Cl or I) causes a red shift of the band at 242 nm on going from p-Cl to p-I derivative.

The absorption spectra of the benzimidazoles $(L^{1,2})$ were observed in solvents of different polarities and hydrogen bond formation tendency, cyclohexane, DMSO, DMF, dioxane, acetonitrile, 2-propanol, and ethanol (Fig. 5). The two bands at 274 and 280 nm in the cylcohexane (reference solvent) are slightly blue shifted in ethanol and 2-propanol (hydrogen-bonding solvents) suggests that the benzimidazole derivatives are acting as a proton acceptor [31] at the pyridine-type nitrogen. However, the latter bands are redshifted in DMF and DMSO (hydrogen bond acceptor solvents) due to an almost proton transfer from the solute molecules to these solvents. The values of the observed transition energies (E_{obs}) and oscillator strengths (f_{obs}) of all the bands in the electronic spectra of the title compounds in different solvents were calculated [27] and tabulated in (Supplementary material, Table S1). Application of dielectric relation [27] to the band at 250 (L^1) and 254 nm (L^2) did not give a linear relation indicating that the spectral shifts are not governed solely by the dielectric effect of the solvents. Thus, the so-called specific solute-solvent interaction is the main controlling factor in determining the band position.

The lowest 10 singlet-to-singlet spin-allowed excitation states were taken into account for the calculation of the electronic absorption spectra by using TD-DFT method. The calculated energy of excitation states and transition oscillator strength (f) (only f > 0.005is listed) of the title compounds is taken into consideration. The absorption spectrum was simulated using GAUSSSUM software [32] based on the obtained TD-DFT results. Each excited state was interpolated by a Gaussian convolution with the full-width at half-maximum (FWHM) of 3000 cm⁻¹. The theoretical UV-vis spectrum of the benzimidazole (L¹) is characterized by nine electronic transitions at 209, 211, 214, 227, 233, 235, 245, 270, and 297 nm. The lowest energy electronic transition at 297 nm (4.17 eV) characterizes the transition from HOMO to LUMO, while that at 270 nm (4.59 eV) is assigned mainly to HOMO \rightarrow LUMO + 1 (91%). Moreover, the excitation energy at 245 nm (5.05 eV) is contributed from the transitions between HOMO-1 and LUMO (21%)/LUMO+2 (7%)/LUMO + 3 (10%) in addition to HOMO-2 \rightarrow LUMO (54%) transition. The electronic transitions at 235 nm (5.26 eV) are connected with HOMO \rightarrow LUMO + 2 (68%), and HOMO \rightarrow LUMO + 3 (28%). The

electronic transitions between HOMO and LUMO + 2 (7%)/LUMO + 3 (4%), HOMO-1 and LUMO (55%)/LUMO + 3 (3%) in addition to HOMO-2 and LUMO (22%)/LUMO + 3 (3%) are attributed to 233 nm (5.31 eV). The highest energy transitions at 211 (5.87 eV) and 214 nm (5.79 eV) are assigned to HOMO-3 \rightarrow LUMO (96%) and HOMO-1 \rightarrow LUMO + 1 (96%), respectively. The excitation energy at 209 nm (5.92 eV) is assigned to HOMO-2 \rightarrow LUMO + 1 (24%), and HOMO \rightarrow LUMO + 5 (71%).

On the other hand, the theoretical UV–vis spectrum of the benzimidazole (L²) is characterized by five electronic transitions at 233, 240, 249, 253, and 283 nm. The lowest excitation energy at 283 nm (4.37 eV) characterizes the transitions from HOMO \rightarrow LUMO+2 (93%) and HOMO-5 \rightarrow LUMO+4 (4%), while the electronic transition at 253 nm (4.90 eV) is due to HOMO \rightarrow LUMO+3 (95%) and HOMO \rightarrow LUMO+4 (2%). The electronic transitions between HOMO and LUMO+4 (3%), HOMO-1 and LUMO+3 (20%)/LUMO+4 (2%) in addition to HOMO-2 \rightarrow LUMO (67%) are attributed to 249 nm (4.99 eV). The excitation energy at 240 nm (5.17 eV) is assigned mainly to HOMO \rightarrow LUMO+4 (67%). The highest energy transition at 233 (5.30 eV) is due to HOMO-1 \rightarrow LUMO (73%), HOMO \rightarrow LUMO+4 (12%) and HOMO-2 \rightarrow LUMO+3 (8%) transitions.

3.3.2. Electronic absorption spectra in solutions of varying pH

The absorption spectra of $3 \times 10^{-5} \text{ M}$ solutions of $L^{1,2}$ compounds in 20% (v/v) ethanolic solutions of varying pH values were scanned in the UV-vis range. p-Cl derivative (L¹) is neutral over the entire pH range 4.5-8.2 and possesses a clear isosbestic point in the acidic medium at 213 nm as shown in Fig. 6. The bands located at 250, 274 and 280 nm in ethanol are blue shifted to 243, 269 and 275 nm at pH 2 (H_2L^{2+}) . With increasing the pH, these bands remain in their new positions with the appearance of shoulder at 279 nm at pH 5. Between pH 6 and 12, these bands are red shifted to 247, 273, and 279 nm, accompanied by a variation in the absorbance values according to the presented species $(L^{-} \text{ and } L^{2-})$. p-I derivative (L^{2}) has the same behavior as p-Cl compound with a clear isosbestic point in the acidic medium at 213 nm. The pH-absorbance changes [33] were utilized to calculate the acid dissociation constants. Four pK_a values were reported for the investigated compounds. The first pK_a value 2.49 \pm 0.02 for the p-Cl derivative (L^1) is assigned to the deprotonation of the protonated secondary amino group, while the second pK_a 4.42 ± 0.03 may be attributed to the deprotonation of the protonated pyridine type nitrogen [34]. The third $pK_a 8.43 \pm 0.02$ is accounted for the ionization of the NH_{sec} group, while the fourth pK_a 11.42 \pm 0.01 is attributed to ionization of the imidazolic proton [33]. On the other hand, the pK_a values at 2.71 ± 0.01 , 5.06 ± 0.04 , 7.84 ± 0.03

Fig. 4. (a) ¹H NMR spectrum of p-I derivative (L²) in DMSO (b) ¹H NMR spectrum in DMSO/D₂O; (c) Aromatic region in DMSO (d) Aromatic region in DMSO/D₂O.

and 11.50 ± 0.01 for the benzimidazole (L²) are assigned to the latter processes as p-Cl derivative. It was found that the ionization of the secondary amino group is directly influenced to some extent by both the type and nature of the substituents. Thus, the substituents of electron withdrawing characters increase the acidic behavior of the NH_{sec} group.

4. DFT studies

4.1. Geometry optimization

Full geometry optimizations of the title compounds were performed at the DFT level of theory [9]. Table 4 presents the optimized structure parameters of the benzimidazoles ($L^{1,2}$) as calculated by DFT/B3LYP level of theory using 6-31G (d) and SDD basis set, respectively. For L^1 derivative, a significant difference (0.067 Å) is found between the bond lengths N15–C7 and N16–C7. Similar, a difference of 0.064 Å is found between the latter bonds in the L^2 compound. This confirms that the hydrogen atom is fixed at one of the two nitrogen atoms through the intermolecular hydrogen bonding. Moreover, these bond lengths have a shorter distance than any amine compound due to the participation of the lone electron pair of the nitrogen atom in resonance of the benzimidazole ring. It is found that, the phenyl ring appears little distorted and its angles are slightly out of the perfect hexagonal structure. This is due to the attachment of the imidazole moiety to the benzene ring in the

Fig. 5. Electronic absorption spectra of $(3 \times 10^{-5} \text{ M})$ of p-Cl (L¹) derivative in different solvents.

place of hydrogen atoms. The breakdown of hexagonal symmetry of the benzene ring in the p-Cl derivative is obvious from the elongation of C4–C5 (1.415 Å) and C1–C2 (1.409 Å) comparing to the remaining C1–C3, C3–C4, C2–C6 and C5–C6 bonds, which almost have the same bond lengths as will be confirmed latter by the NBO analysis.

Substitution in the para position of the aniline ring with halogen atom (X = Cl, and I) leads to some changes in the bond lengths and bond angles of the aniline moiety as a result of the charge redistribution. Due to the σ -withdrawing character of the halogen atom, the optimized C-C bond lengths adjacent to the halogen atom are slightly shorter than the corresponding ones in the unsubstituted derivative [30] at the same level of theory. In addition, the angle (C11–C12–C13) in L¹ or (C15–C16–C17) in L² near to the position of halogen is longer than that found in case of the unsubstituted compound [30]. The dipole moment of the unsubstituted derivative [30] increases dramatically from 3.615 D to 5.388 and 6.321 D for the chloro-, and iodo-derivatives, respectively. The high electronegativity of the halogen atom induces polarization both in σ - and π -frameworks of the aniline moiety. The studied compounds (L^{1,2}) show accumulation of the negative charge density on the pyridine-type nitrogen, which is a very important structural feature related directly to the ability to bind the metal ions. Several calculated thermodynamic parameters are presented in Table 4.

4.2. Natural bond orbital (NBO) analysis

The natural bond orbital (NBO) calculation [13] of L^{1.2} compounds was performed using NBO 3.1 program implemented in the *GAUSSIAN03* package at the DFT/B3LYP level. The ideal Lewis structure picture is constructed from Lewis σ -type (donor) NBOs that are complemented by the non-Lewis σ -type (acceptor) NBOs. The filled NBOs of the natural Lewis structure are well adapted to describe covalency effects in molecules. The anti-bonds represent empty valence-shell capacity and spanning portions of the atomic valence space that are formally unsaturated by covalent electrons. Weak occupancies of the valence anti-bonds signal irreducible departure from an idealized localized Lewis picture, i.e. true "delocalization effects". Therefore, NBO analysis provides an efficient method for studying intra- and intermolecular bonding and provides a convenient basis for investigating charge transfer or conjugative interaction in molecular systems.

Fig. 6. Electronic absorption spectra of $(3 \times 10^{-5} \text{ M})$ of p-Cl derivative (L¹) in solutions of varying pH.

Table 4

Selected bond lengths (Å), angles (°) and charg	e for L ^{1,2} compounds
---	----------------------------------

L ¹					L ²				
Bond lengths (Å) Bond angles		°) Charge		Bond lengths (Å)		Bond angles (Bond angles (°)		
C1C2	1.409	C3C1C2	121.410	C1 = -0.143	C1C2	1.407	C1C2C3	117.858	C1 = -214
C1C3	1.391	C4C3C1	117.974	C2 = -0.148	C2C3	1.404	C2C3C4	121.336	C2 = -194
C3C4	1.399	C5C4C3	119.841	C3 = -0.178	C3C4	1.421	C3C4C5	121.547	C3 = -0.333
C4C5	1.415	C6C2C1	121.546	C4=0.239	C4C5	1.406	C4C5C6	116.719	C4=0.027
C5C6	1.395	C7N16C4	105.265	C5=0.354	C5C6	1.404	H7C2C1	120.454	C5=0.253
C4C7	2.147	C8C7N16	124.367	C6 = -0.174	C1C6	1.428	H8C3C2	119.577	C6 = -0.359
C7C8	1.502	N17C8C7	109.087	C7 = 0.515	C11C12	1.506	H9C4C3	119.169	C7 = 0.149
C8C9	2.474	C10C9N17	119.565	C8 = -0.171	C13C14	1.422	H10C5C4	121.016	C8 = -0.406
C9C10	1.410	C11C10C9	121.113	C9 = 0.372	C14C15	1.401	C1N21C11	105.806	C9 = 0.458
C10C11	1.389	C12C11C10	119.737	C10 = -0.186	C15C16	1.409	N21C11C12	123.415	C10 = -0.406
C11C12	1.396	C13C12C11	120.296	C11 = -0.135	C16C17	1.404	C11C12N22	108.619	C11 = -0.123
C12C13	1.391	C14C13C12	119.943	C12 = -0.073	C17C18	1.407	N22C13C14	148.335	C12 = -0.359
C13C14	1.395	C14C9C10	118.115	C13 = -0.141	I19C16	2.145	C13C14C15	121.035	C13 = -0.150
C9C14	1.407	N16C7N15	113.044	C14 = -0.180	N22C12	1.451	C14C15C16	119.929	C14 = -0.332
N15C7	1.376	C7N15C5	107.101	N15 = -0.747	N21C11	1.330	C15C16C17	120.056	N15 = -0.444
N16C7	1.309	N16C4C5	110.130	N16 = -0.576	N20C11	1.394	C16C17C18	120.098	N16 = -0.126
N17C9	1.385	N15C5C4	104.459	N17 = -0.682	N22C13	1.386	I19C16C15	119.773	N17 = -0.429
C12Cl18	1.764	H19C3C1	121.719	Cl = -0.045	H23N20	1.011	N20C11C12	123.415	I = 0.066
H23N15	1.010			H23=0.333	H26N22	1.016			H23=0.228
H26N17	1.014			H26=0.352					H26=0.347
<i>E</i> (a.u.)			-719.181		-716.280				
Zero-point E (kcal mol ⁻¹)			147.655		147.887				
Rotational constants (GHz)		1.932,0.11	2,0.106	1.957, 0.064,	0.062				
Entropy (cal mol ⁻¹ K ⁻¹)									
Translational			42.532		43.444				
Rotational			33.901		34.987				
Vibrational			48.777		50.495				
Total dipole moment (D)			5.388		6.321				

Hyperconjugation may be given as a stabilizing effect that arises from an overlap between an occupied orbital with another neighboring electron deficient orbital when these orbitals are properly oriented. The hyperconjugative interaction energy was deduced from the second-order perturbation approach of Fock Matrix in NBO basis between donor-acceptor orbitals [35]. The larger the second order interaction energy (E^2) value, the more intensive is the interaction between electron donors and electron acceptors, i.e. the more donating tendency from electron donors to electron acceptors and the greater the extent of conjugation of the whole system. These interactions can be identified by finding an increase in the electron density (ED) of the anti-bonding orbital that weakens the respective bonds. The results of NBO analysis for the p-Cl derivative show that the π (C2–C6) and π (C7–N16) participate as donor and the $\pi^*(C4-C5)$ anti-bond as acceptor, $[\pi(C2-C6) \rightarrow \pi^*(C4-C5)]$ and $[\pi(C7-N16) \rightarrow \pi^*(C4-C5)]$ with charge transfer energy values 280 and 340 J mol⁻¹, respectively. These interactions weaken the C4–C5 bond with elongation of its bond length as previously mentioned. The σ (C4–C5) is formed from sp^{2.08} hybrid on C4 (which is a mixture of 32.43% s, and 67.52% p atomic orbitals) and sp^{2.02} on C5 (66.90% p contribution) as shown in Table 5. Thus, the increasing of p characters on carbons C4 and C5 bond orbitals result in lengthening of the σ (C4–C5) bond than the other C–C bond lengths in the benzene ring of the benzimidazole moiety. In addition, the intramolecular hyperconjugative interaction of the π electrons occurs from C1–C3 to π^* (C2–C6) (ED \approx 0.335e and E^2 = 280 J mol⁻¹) leads to strong stabilization of the benzene ring of the benzimidazole moiety. The lone pair interaction of LP N16 (sp^{2.12}) with antibonding $\sigma^{*}(C7-N15)$ has a large energy difference (~810 J mol⁻¹) which is an evidence for charge transfer from nitrogen atom to the $\sigma^*(C7-N15)$ and induces partial π character. As shown in Table 5, p-I (L²) derivative has the same behavior as the other derivative, where the strongest interaction is LP(1)N17 $\rightarrow \pi^*(C9-C14)$ $(ED \approx 0.427e \text{ and } E^2 = 44.7 \text{ kJ mol}^{-1}).$

4.3. Frontier molecular orbitals

The frontier molecular orbitals play an important role in the electric and optical properties [36]. The frontier orbital gap helps to characterize the chemical reactivity and kinetic stability of the molecule. A molecule with a small frontier orbital gap is more polarizable, is generally associated with a high chemical reactivity, low kinetic stability, and is termed as soft molecule. Fig. 7 shows the distributions and energy levels of the HOMO and LUMO orbitals for the studied compounds. The values of the energy separation between HOMO and LUMO are 4.71 and 4.38 eV for the benzimidazoles (L^{1,2}), respectively.

4.4. Electrochemical studies

The redox behavior of the benzimidazoles $(L^{1,2})$ was studied by cyclic voltammetry (CV) in acetonitrile in presence of NaClO₄·H₂O as a supporting electrolyte. These compounds behave similarly and are oxidized in a two irreversible one-electron processes following the ECEC mechanism as shown in Fig. 8. The studied compounds form the cation-radical through a one-electron loss, which is followed by a deprotonation process from the imidazolic NH group to give the corresponding radical (Scheme 1). This radical undergoes the second electron transfer followed by the removal of another proton from the secondary amino group to form the di-radical [37]. In order to elucidate the effect of the introduction of the substituent (Cl and I) on the para-position of the aniline moiety, the CV of the unsubstituted derivative [30] has been also conducted. The unsubstituted derivative exhibited the oxidation processes at 0.93 and 1.27 V, while the p-Cl (L¹) derivative showed these processes at 0.98 and 1.44 V. Thus, the presence of chlorine substituent in the para-position of the aniline moiety shifts the second oxidation process towards higher potential. On the other hand, the p-I (L^2) derivative showed only the first oxidation process at 1.04V.

Table 5

The most important interactions between "filled" (donors) Lewis-type NBOs and "empty" (acceptors) non-Lewis NBOs.

Donor ^a Lewis-type NBOs (A B)	Occupancy	Hybrid ^e	AO (%) ^f	Acceptor ^b non Lewis NBOs	NBOs	E^2 (kJ mol ⁻¹)	$E(j) - E(i)^c \times 10^3 (\text{kJ mol}^{-1})$	$\begin{array}{l} F(i, \\ j)^d \times 10^3 (kJ \\ mol^{-1}) \end{array}$
L ¹								
π(C1—C3)	1.712	sp (C1) sp (C3)	s(0.00)p(99.96) s(0.00)p(99.95)	π*(C2—C6)	0.335	20.29	0.28	0.068
π(C2—C6)	1.724	sp (C2) sp (C6)	s(0.00)p(99.96) s(0.00)p(99.96)	π*(C4—C5)	0.473	20.06	0.28	0.070
π(C4—C5)	1.599	sp (C4) sp (C5)	s(0.00)p(99.97) s(0.00)p(99.97)	π*(C1—C3)	0.308	18.48	0.29	0.067
π(C7—N16)	1.878	sp (C7) sp (N16)	s(0.00)p(99.90) s(0.00)p(99.70)	π*(C4—C5)	0.473	17.73	0.34	0.077
π(C9—C14)	1.640	sp (C9) sp (C14)	s(0.01)p(99.95) s(0.00)p(99.97)	π*(C12—C13)	0.404	25.28	0.27	0.075
LP(1)N15 LP(1)N15 LP(1)N16 LP(1)N17 LP(1)Cl	1.627 1.627 1.915 1.783 1.993	sp sp ^{2.12} sp ^{18.74} d ^{0.01} sp ^{0.22}	s(0.00)p(99.98) s(0.00)p(99.98) s(32.00)p(67.85) s(5.06)p(94.91)d(0.03) s(82.23)p(17.75)	$\begin{array}{l} \pi^*(\text{C4-C5}) \\ \pi^*(\text{C7-N16}) \\ \sigma^*(\text{C7-N15}) \\ \pi^*(\text{C9-C14}) \\ \pi^*(\text{C12-C13}) \end{array}$	0.473 0.341 0.042 0.417 0.405	31.59 50.00 10.43 37.10 10.98	0.30 0.29 0.81 0.29 0.33	0.090 0.107 0.083 0.098 0.059
L ²								
π(C4—C5)	1.602	sp (C4) sp (C5)	s(0.00)p(100.00) s(0.00)p(100.00)	π*(C1—C3)	0.304	19.56	0.29	0.069
π(C4—C5)	1.602	sp (C4) sp (C5)	s(0.00)p(100.00) s(0.00)p(100.00)	π*(C2—C6)	0.332	19.61	0.28	0.068
π(C9—C14)	1.971	sp (C9) sp (C14)	s(0.00)p(100.00) s(0.00)p(100.00)	π*(C12—C13)	0.403	27.69	0.27	0.079
π(C12—C13)	1.713	sp (C12) sp (C13)	s(0.00)p(100.00) s(0.00)p(100.00)	π*(C10—C11)	0.320	23.20	0.29	0.074
LP(1)N15 LP(1)N16 LP(1)N17 LP(1)I	1.638 1.919 1.760 1.993	sp sp ^{1.98} sp sp ^{0.12}	s(0.00)p(100.00) s(33.59)p(66.41) s(0.00)p(100.00) s(89.33)p(10.67)	$\begin{array}{l} \pi^{*}(\text{C4C5}) \\ \sigma^{*}(\text{C7N15}) \\ \pi^{*}(\text{C9C14}) \\ \pi^{*}(\text{C12C13}) \end{array}$	0.476 0.044 0.427 0.403	30.75 10.35 44.70 5.97	0.31 0.74 0.27 0.28	0.089 0.079 0.103 0.040

^a LP(n)A is a valence lone pair orbital (n) on A atom.

^b (*) denotes anti-bonding, and Ry corresponds to the Rydberg NBO orbital.

^c Energy difference between donor and acceptor i and j NBO orbitals.

^d F(i, j) is the Fock matrix element between i and j NBO orbitals.

^e Hybrid on A atom in the A—B bond or otherwise, as indicated.

^f Percentage contribution of atomic orbitals in NBO hybrid.

The reduction of the investigated compounds $(L^{1,2})$ is done easily through the acceptance of two electrons in one irreversible two-electron-wave producing the corresponding dianion of the imine moiety, which is basic enough to accept two protons not only from the residual water, but also from the supporting electrolyte.

It might be tempting now to correlate the values E_{0x} derived from CV with HOMO-LUMO energy differences obtained from DFT calculations. The UV-vis absorption of a molecule corresponds indeed to excitation of an electron from the HOMO into the LUMO, whereas electro-oxidation corresponds only to the removal of an electron from the HOMO. A correlation might be possible if reduction of this molecule (i.e. donation of an electron into the LUMO) may be possible; in this case, the potential difference between oxidation and reduction potentials may be correlated with the HOMO-LUMO energy gap [38]. The potential difference between the first oxidation peaks in the unsubstituted derivative and that of the p-Cl derivative (L^1) is 0.06 V, which is in a good agreement with the shift, associated with the HOMO-LUMO gaps on going from the unsubstituted derivative to the p-Cl compound (0.06 eV) [6]. The DFT data have assigned that the LUMO of the p-Cl (L¹) and p-I (L^2) derivatives are constituted mainly by C=N group of the benzimidazole ring and thus the reduction is considered as electron accommodation at C=N dominated orbitals.

4.5. Biological activity

The antimicrobial activities of the studied compounds were carried out using cultures of *B. subtilis, S. aureus*, and *S. faecalis* as Gram-positive bacteria and *E. coli, P. aeruginosa*, and *N. gonorrhea* as Gram-negative bacteria and compared with those of the unsubstituted derivative, (1H-benzimidazol-2-ylmethyl)-*N*-phenyl amine [30]. In the earlier studies [30], it was found that, the unsubstituted derivative is more toxic than the standard tetracycline against the bacterium *S. aureus* with a minimum inhibitory concentration (58 µg/ml) as compared with tetracycline (82 µg/ml). As shown in Fig. 9, the title compounds have the capacity of inhibiting the metabolic growth of the investigated bacteria to different extents especially the *P. aeruginosa*, but less than the unsubstituted derivative. The toxicity of these compounds may be arising from the benzimidazole ring, which may play an important role in the antibacterial activity [6].

In classifying the antibacterial activity as Gram-positive or Gram-negative, it would be expected that a much greater number of drugs would be active against Gram-positive than Gram-negative bacteria [39]. However, in this study, the title compounds are active against both types of the bacteria, which may indicate broad-spectrum properties. It is seen that the activity of the title compounds is affected by the nature of the substituents on the

(a) (HOMO, -5.31 eV)

(LUMO, -0.60 eV)

(b) (HOMO, -5.36 eV)

(LUMO, -0.98 eV)

Fig. 7. Molecular orbital surfaces and energy levels of (a) p-Cl (L¹) and (b) p-I (L²) derivatives.

aniline ring, this in relation to the lipophilicity of the compounds and their membrane permeability, a key factor in determining their entry inside the cells. The introduction of substituent (Cl or I) in the para-position of the aniline ring decreases markedly the antibacterial activity. The antibacterial effect declines on going from unsubstituted to p-Cl and finally p-I derivative. On the other hand, the variation in the effectiveness of the studied compounds against different organisms depends either on the impermeability

Fig. 8. CV of the benzimidazoles, p-Cl (L^1) , p-I (L^2) and the unsubstituted derivative (uns.).

Scheme 1. Proposed oxidation mechanism for benzimidazole (L1).

Fig. 9. Antibacterial activities of the benzimidazoles (L^{1,2}) and tetracycline against *B. subtilis*, *S. aureus*, and *S. faecalis* as Gram-positive, *P. aeruginosa*, *E. coli*, and *N. Gonorrhea* as Gram-negative bacteria. All experiments were carried out in triplicate and the mean results are given. DMSO was used as control and its inhibition zone was subtracting from that of each case.

of the cells of the microbes or on differences in ribosome of microbial cells.

5. Conclusion

In an effort to prepare new compounds with potential biological activity, we have synthesized and characterized (1Hbenzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L¹) and (1H-benzimidazol-2-ylmethyl)-N-(4-iodo-phenyl)-amine (L²) byspectral methods and elemental analysis. The PCM model fails to describe the experimental chemical shift associated with the NH protons and the specific solute-solvent interactions must be considered for a proper and reliable description of the influence of solvent on the chemical shifts associated with hydrogen-bonded systems. The specific solute-solvent interaction is the main controlling factor in determining the UV-vis band position. The electronwithdrawing substituents increase the acidic behavior of the NH_{sec} group. The high electronegativity of the halogen atom induces polarization both in σ - and π -frameworks of the aniline moiety. The title compounds have the capacity of inhibiting the metabolic growth of the investigated bacteria to different extents.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.saa.2012.01.080.

References

- W.O. Foye, L.L. Thomas, A. David, B.I. Williams, Principles of Medicinal Chemistry, Waverly Pvt. Ltd., New Delhi, 1995.
- [2] N.S. Pawar, D.S. Dalal, S.R. Shimpi, P.P. Mahulikar, Eur. J. Pharm. Sci. 21 (2004) 115-118.
- [3] Y. He, J. Yang, B. Wu, L. Risen, E.E. Swayze, Bioorg. Med. Chem. Lett. 14 (2004) 1217–1220.
- [4] İ. Ören, Ö. Temiz, İ. Yalcin, E. Şener, N. Altanlar, Eur. J. Pharm. Sci. 7 (1998) 153–160.
- [5] T. Hisano, M. Ichikawa, K. Tsumoto, M. Tasaki, Chem. Pharm. Bull. 30 (1982) 2996–3004.
- [6] (a) N.T. Abdel-Ghani, A.M. Mansour, J. Mol. Struct. 991 (2011) 108–126;
 (b) N.T. Abdel-Ghani, A.M. Mansour, Inorg. Chim. Acta 373 (2011) 249–258.
- [7] N.T. Abdel-Ghani, A.M. Mansour, Spectrochim. Acta A 86 (2012) 605–613.
- [8] N.T. Abdel-Ghani, A.M. Mansour, Spectrochim. Acta A 81 (2011) 754-763.
- [9] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5682;
- (b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1998) 785–789.
- [10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone,

M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 03 (Revision A.9), Gaussian, Inc., Pittsburgh, 2003.

- [11] A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual, Gaussian Inc., Pittsburgh, PA, 2000.
- [12] Recent developments and applications of modern density functional theory, in: M.E. Casida, J.M. Seminario (Eds.), in: Theoretical and Computational Chemistry, vol. 4, Elsevier, Amsterdam, 1996, p. 391.
- [13] F. Weinhold, J.E. Carpenter, The Structure of Small Molecules and Ions, Plenum, New York, 1988, p. 227.
- [14] R. Ditchfield, Chem. Phys. 76 (1972) 5688-5691.
- [15] M.I. Rahman, W.J. Choudhary, Thomsen, Bioassay Techniques for Drug Development, Harwood Academic Publishers, The Netherlands, 2001, p. 16.
- [16] National Committee for Clinical Laboratory Standards, NCCLS Approval Standard Document M2-A7, Vilanova, PA, 2000.
- [17] A. Rahman, M.I. Choudhary, W.J. Thomsen, Bioassay Techniques for Drug Development, Harwood Academic Publishers, Netherlands, 2001, p. 16.
- [18] (a) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093–3100;
 (b) J.A. Pople, H.B. Schlegel, R. Krishnan, J.S. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, Int. J. Quantum Chem.: Quantum Chem. Symp. 15 (1981) 269–278.
- [19] (a) M.W. Ellzy, J.O. Jensen, H.F. Hameka, J.G. Kay, D. Zeroka, Spectrochim. Acta 57A (2001) 2417–2432;
- (b) J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka, J.M. Lochner, J. Mol. Struct.: Theochem. 531 (2000), 323–231;
- (c) J.O. Jensen, D. Zeroka, J. Mol. Struct.: Theochem. 487 (1999) 267-274.
- [20] K. Hofmann, Imidazole and its Derivatives, Interscience Publishers, New York, 1953.
- [21] (a) S. Mohan, N. Sundaraganesan, Spectrochim. Acta A 47 (1991) 1111;
 (b) N. Sundarag-anesan, S. Ilakiamani, P. Subramani, B. Dominic Joshua, Spectrochim. Acta A 67 (2007) 628–635.

- [22] N.M. Agathabay, M. Tulu, M. Somer, D. Haciu, A. Yilmaz, Struct. Chem. 19 (2008) 21.
- [23] F.S. Miranda, F.G. Menezes, J. Vicente, A.J. Bortoluzzi, C. Zucco, A. Neves, N.S. Gonçalves, J. Mol. Struct. 938 (2009) 1–9.
- 24] S. Sebastian, N. Sundaraganesan, Spectrochim. Acta A 75 (2010) 941-952.
- [25] (a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117;
- (b) R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449. [26] V. Chiş, A. Pîrnău, M. Vasilescu, R.A. Varga, O. Oniga, J. Mol. Struct. (Theochem.)
- 851 (2008) 63-74. [27] R.M. Issa, A.A. Hassanein, I.M.R.I. El-Mehasseb, A. El-Wadoud, Spectrochim. Acta Part A 65 (2006) 206-214.
- [28] (a) M. Krishnamurthy, P. Phaniraj, S.K. Dogra, J. Chem. Soc. Perkin Trans. II (1986) 1917–1925 (and the references therein);
- (b) A.K. Mishra, S.K. Dogra, J. Photochem. 31 (1985) 333-344; Indian J. Phys., Sect. B 54 (1984) 480; Spectrochim. Acta. Part A, 39 (1983) 609-615.
- [29] R.M. Issa, S.A. Él-Daly, N.A. El-Wakiel, Spectrochim. Acta Part A 59 (2003) 723–728.
- [30] N.T. Abdel-Ghani, A.M. Mansour, Spectrochim. Acta A 81 (2011) 529–543.
 [31] P.N. Preston, Benzimidazoles and Congeneric Tricyclic Compounds, Part I,
- Wiley, New York, 1981, p. 64.
- [32] N.M. O'Boyle, GAUSSSUM 2.0, (2006), available from http://gausssum.sf.net>.
 [33] I.M. Issa, R.M. Issa, M.S. El-Ezaby, Y.Z. Ahemed, Z. Physik, Chem. 242 (1969) 169;
- [35] I.M. ISsa, K.M. ISsa, M.S. El-Ezaby, Y.Z. Ahemed, Z. Physik. Chem. 242 (1969) 169,
 I.M. Issa, R.M. Issa, M.S. El-Ezaby, Y.Z. Ahemed, Z. Physik. Chem. 250 (1972) 161.
 [34] A.K. Mishra, S.K. Dogra, Bull. Chem. Soc. Jpn. 58 (1985) 3587;
- A.K. Mishra, S.K. Dogra, J. Photochem. 31 (1985) 333; A.K. Mishra, S.K. Dogra, Indian J. Phys. Sect. B 54 (1984) 480; A.K. Mishra, S.K. Dogra, Spectrochim. Acta Part A 39 (1983) 609.
- [35] C. Ravikumar, I. Hubert Joe, V.S. Jayakumar, Chem. Phys. Lett. 460 (2008) 552–558.
- [36] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
- [37] G.M. Abou-Elenien, A.A. El-Maghrdy, H.R. Abdel-Twab, Electroanalysis 13 (7) (2001) 587–595.
- [38] M. Al-Anber, B. Milde, W. Alhalasah, H. Lang, R. Holze, Electrochim. Acta 53 (2008) 6038–6047.
- [39] A.R. Mcutcheon, S.M. Ellis, R.E.W. Hancock, G.H.N. Towers, J. Ethnopharmacol. 37 (1992) 213–223.