Lithiation of (Dialkylaminomethyl)trimethylsilanes

Kiyotaka Marumo, Sumie Inoue, Yoshiro Sato* and Hideo Kato
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

The silylmethyl groups of (dialkylaminomethyl)trimethylsilanes $\mathbf{1}$ undergo ready lithiation with butyllithium and the resulting mixtures when quenched with chlorotrimethylsilane or aldehydes afford N,N-dialkyl(2,2,4,4-tetramethyl-2,4-disilapentyl)amines $\mathbf{3}$ or (dialkylaminomethyl)(2-hydroxyalkyl)-dimethylsilanes $\mathbf{4}$.

Since the α -hydrogens of organosilicon compounds are more acidic than the corresponding hydrogens of alkanes, ¹ trimethylsilyl groups undergo ready lithiation with reagents such as butyllithium–N,N,N',N'-tetramethylethylenediamine (TMEDA) ² or *tert*-butyllithium; ³ the conversion yields are, however, usually low.

Selective lithiation occurs at the *ortho* position of *N*,*N*-dialkylbenzylamines.⁴ During our work with aminoalkylsilanes, we noticed that the treatment of *N*-methyl-*N*-(trimethylsilylmethyl)benzylamine with butyllithium followed by chlorotrimethylsilane gave *N*-methyl-*N*-(2,2,4,4,-tetramethyl-2,4-disilapentyl)-*N*-methylbenzylamine as the main product instead of

the expected N-methyl-N-(trimethylsilylmethyl)-2-(trimethylsilyl)benzylamine. The lithiation of the silylmethyl group may be accelerated by the presence of a β -amino group. We then examined the reaction of (dialkylaminomethyl)trimethylsilanes with alkyllithium.

A solution of 1-(trimethylsilylmethyl)piperidine 1a or N-(trimethylsilylmethyl)dibutylamine 1b in ether was heated at reflux for 20 h with butyllithium (2 mol equiv.) and then quenched with chlorotrimethylsilane at 0 °C to room temperature to give N,N-dialkyl(2,2,4,4-tetramethyl-2,4-disilapentyl)amine (3a or 3b) in moderate yield (entries 1 and 6). The quenching with aldehydes afforded (dialkylaminomethyl)(2-hydroxyalkyl)di-

Scheme 1 Reagents and conditions: i, BuLi (2 equiv.), Et₂O, reflux, 20 h; ii, Me₃SiCl (2 equiv.), 0–25 °C, 3 h; iii, RCHO (2.2 equiv.), 0–25 °C, 3 h

Table 1 Reaction of (dialkylaminomethyl)trimethylsilanes with BuLi followed by Me₃SiCl or RCHO^a

Entry	R¹	\mathbb{R}^2	Electrophile	Product (Yield, %) ^b	B.p. ^f (°C/mmHg)
1	-(C)	H ₂) ₅ -	Me ₃ SiCl	3a (85)	90-95/1
2	-(C)	H ₂) ₅ -	CH ₃ (CH ₂) ₆ CHO	4a (72)	95-105/0.4
3	~(C)	$H_2)_5-$	c-C ₆ H ₁₁ CHO	4b (70)	95-105/0.4
4	-(C)	$H_2)_5-$	Me ₃ CCHO	4c (57)	100-110/1
5			PhČHO	4d (85)°	150-155/0.4
6	Bu	Bu	Me ₃ SiCl	3b (61)	100-105/1
7	Bu	Bu	CH ₃ (CH ₂) ₆ CHO	4e (46) ^d	150-160/0.4
8	Bu	Bu	c-C ₆ H ₁₁ CHO	$4f(48)^d$	140-150/0.4
9	Bu	Bu	Me ₃ CCHO	4g (50) e	105–115/0.5

^a All products exhibited NMR, IR and elemental analyses consistent with the assigned structures; details of these are available as a Supplementary publication [SUP 56839 (4 pp.)]. For details of the Supplementary publications scheme, see 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1991, Issue 1. ^b Isolated yields. ^c PhCHO was added at −78 °C. ^d 1b (24%) was recovered. ^e 1b (30%) was recovered. ^f B.p.s are the oven temperature of the Büchi Kugelrohr distillation apparatus.

methylsilanes 4a-g (entries 2-5 and 7-9). Use of equimolar amounts of butyllithium or treatment with 2 mol equiv. at room temperature resulted in a decrease of the yields of 3 or 4.

The lithiation of the silylmethyl groups may be accelerated by the chelation between the lithium and the amino group 2. No lithiation was observed by a similar treatment of (2-dialkylaminoethyl)trimethylsilanes with butyllithium.

Experimental

Diethyl ether was distilled under nitrogen from sodium-benzophenone.

Typical Procedure.—A solution of 1 (3 mmol) and butyllithium (1.6 mol dm⁻³ in hexane; 4 ml, 6 mmol) in diethyl ether (10 ml) was refluxed under nitrogen for 20 h. A solution of chlorotrimethylsilane (716 mg, 6.6 mmol) or aldehyde (6.6 mmol) in diethyl ether (5 ml) was then added to the reaction mixture at 0 °C. The mixture was stirred for 3 h at room temperature, after which the reaction was quenched with saturated aqueous NH₄Cl and extracted with ether. The ethereal extract was washed with water, dried (MgSO₄), and concentrated. The residue from the reaction with chlorotrimethylsilane was distilled under reduced pressure. The product from the reaction with aldehyde was purified on an alumina column (hexane—ether, 5:1). The compounds so prepared are listed in Table 1.

References

- A. R. Bassindale and P. G. Taylor, in *The Chemistry of Organic Silicon Compounds*, *Part 2*, eds. S. Patai and Z. Rappoport, John Wiley & Sons, N.Y., 1989, p. 839.
- 2 J. Peterson, J. Organomet. Chem., 1967, 9, 373.
- 3 G. A. Gornowicz and R. West, J. Am. Chem. Soc., 1968, 90, 4478.
- 4 H. W. Gschwend and H. R. Rodriguez, Org. React., 1979, 26, 1.
- 5 K. Marumo and Y. Sato, an unpublished result.

Paper 1/02907J Received 17th June 1991 Accepted 17th June 1991