

Synthesis of Dihydropyridinone-Fused Indoles and α -Carbolines via N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of Indolin-2imines and Bromoenals

Liang Yi,^{†,‡} Yuyang Zhang,[†] Zhao-Fei Zhang,^{†,§} Degun Sun,^{*,‡} and Song Ye^{*,†,§}

[†]Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai 264209, China

[§]University of Chinese Academy of Science, Beijing 100049, P. R. China

Supporting Information

give dihydropyridinone-fused indoles in good to high yields, which were transformed to α -carbolines with different 2-subsituents by a process of dehydrogenation, tosylation, and palladium catalyzed C-C or C-N coupling reaction.

onstruction of heterocycles combining two biologically \prime attractive motifs is highly desired in drug discovery.¹ α -Carbolines (pyrido [2,3-b] indoles), combining indole² and pyridine,³ are known to exhibit an array of biological activities,⁴ such as grossularine-1 and grossularine-2 as anticancer compounds,^{4a-c} mescengricin as the inhibitor of L-glutamate excitotoxicity in neurons,^{4d} and isoxazolo[5',4':5,6]pyrido[2,3b]indoles as a new kind of anticancer lead (Figure 1).^{4e} Many strategies have been developed for the synthesis of α -carbolines, including Graebe Ullmann reactions,⁵ Diels-Alder reaction,⁶ Vilsmeier–Haack reaction,⁷ palladium-catalyzed C–C coupling⁸ and C–N-coupling reactions,⁹ and the 6π -electrocyclization of

isoxazolo[5',4':5,6]pyrido[2,3-b]indoles

Figure 1. Bioactive α -carbolines.

indole-3-alkenyl oximes.¹⁰ In those methods, functional groups at the 2-position, which is crucial to many naturally occurring α carbolines, had to be introduced in advance.

In the past decades, N-heterocyclic carbene (NHC) catalyzed annulation reactions emerged as a powerful tool for the synthesis of various heterocycles.¹¹ The NHC-catalyzed generation of α,β unsaturated acyl azolium and its [3 + 3] annulation with imines afforded dihydropyridinones,¹² which is a key motif for many bioactive compounds.¹³ In this letter, we report the NHCcatalyzed [3+3] annulation of indolin-2-imines with bromoenals to give dihydropyridinones-fused indoles, which could be transformed to carbolines with different 2-subsituents via later modification.

Initially, the model reaction of indolin-2-imines 1a with bromoenal 2a was carried out under NHC catalysis (Table 1). We were encouraged to find that the reaction gave the desired cycloadduct 3aa in 27% yield in the presence of 10 mol % thiazolium NHC precursor A and 1.2 equiv of potassium acetate as the base (entry 1). A series of NHC precursors A-G were then tested for their ability to catalyze the reaction (entries 2-7). While low yields were observed for thioazlium NHC precursors A and B (entries 1-2), no or only trace of cycloadduct 3aa was detected for imidazolium NHC precursors C and D, respectively (entries 3-4). The yields were improved dramatically when triazolium salt NHC precursors E-G were used (entries 5-7). Several other organic and inorganic bases were screened but did not perform as well as potassium acetate (entries 8–11). Besides

Received: March 19, 2017

Table 1. Optimization of Reaction Conditions^a

				F	² h	
\bigcirc	N Ts +	Ph Br	Ph H Br H Development temp Ph N Ts			
1a		2a (1.2 equiv)		3aa		
OH Bn∽N ⁺ S CI [−]		tBu∽N√+N∼tBu CI⁻		$Ph \rightarrow N$	CIO₄ Ph	
Α		С		E		
Mes-N		Mes-N	-∖ ≻N∼Mes		3F4 Ar	
	ř.	G		\mathbf{F} , Ar = C ₆ F ₅		
В		D		G , Ar = 2,4,6-Cl ₃ C ₆ H ₂		
entry	pre-NHC	base	solvent	temp	yield (%) ^b	
1	А	KOAc	THF	rt	27	
2	В	KOAc	THF	rt	13	
3	С	KOAc	THF	rt	NR	
4	D	KOAc	THF	rt	trace	
5	Е	KOAc	THF	rt	68	
6	F	KOAc	THF	rt	57	
7	G	KOAc	THF	rt	68	
8	G	DBU	THF	rt	27	
9	G	DIPEA	THF	rt	32	
10	G	K_2CO_3	THF	rt	18	
11	G	KHCO3	THF	rt	15	
12	G	KOAc	ether	rt	66	
13	G	KOAc	1,4-dioxane	rt	66	
14	G	KOAc	THF	40 °C	99	

^{*a*}General conditions: **1a** (0.2 mmol), **2a** (1.2 equiv), cat. A-G (10 mol %), base (1.2 equiv), solvent (2 mL). ^{*b*}Isolated yield. NR = no reaction.

THF, the reaction proceeded smoothly in ether and 1,4-dioxane (entries 12-13). Finally, the yield was increased to 99% when the reaction was carried out at 40 °C (entry 14).

With the optimized conditions in hand, a variety of substituted indolin-2-imines and bromoenals were then explored (Scheme 1). It was found that both indolin-2-imines with substituents at the 4-/5-position of electron-withdrawing groups (X = 4-Cl, 5-Br) and electron-donating groups (X = 4-Me, 5-MeO) gave the products (**3ba-3ea**) in good to high yields. Substitution at 6position (X = 6-Br) also resulted in good yield (**3fa**). Furthermore, an N-benzyl indolin-2-imine worked just as well as the N-methylsubstrates, giving cycloadduct **3ga** in 85% yield. Both β -aryl- α -bromoenals with electron-withdrawing group (Ar = 4-EC H, 4-ClC H, 4-BrC H) and with electron-

(Ar = 4-FC₆H₄, 4-ClC₆H₄, 4-BrC₆H₄) and with electrondonating group (Ar = 4-MeC₆H₄, 4-MeOC₆H₄) worked well, although the later ones afforded better yields (**3ab**-**3ac** vs **3ae**-**3af**). All the reactions of arylbromoenals with *meta*-substituents (Ar = 3-ClC₆H₄, 3-MeOC₆H₄), with *ortho*-substituents (Ar = 2-BrC₆H₄, 2-MeOC₆H₄) and with disubstituents (Ar = 3-Br-4-MeOC₆H₃) went smoothly to give the cycloadducts (**3ag**-**3ak**) in high yields. Notably, the reaction of aliphatic α -bromoenal (R = *n*-C₂H₅, *n*-C₅H₁₁) gave the desired product (**3al**-**3am**) in low and moderate yield, respectively. In addition, β , β -disubstitued bromoenals could also participate in the reaction to give the cycloadducts **3an** and **3ao** with a quaternary carbon in moderate to high yields.

The synthesis of α -carbolines from cycloadduct **3aa** was then investigated (Scheme 2). The dehydrogenation of **3aa** with Pd/ C gave indole-fused pyridinone,¹⁴ which was tosylated to afford compound **5**.¹⁵ The palladium-catalyzed coupling reaction of heteroaryl tosylate **5** with aniline, phenylboronic acid, and alkene gave the corresponding α -carbolines **6–8** with 2-amino, 2phenyl, and alkenyl substituent, respectively.¹⁶

In addition, the dihydropyridinone is hydrolyzed with methanol could be ring-opened to give the 2-amino-3-substituted indole 9 in 61% yield (eq 1).

Scheme 2. Synthesis of α -Carbolines

The structure of cycloadduct **3da** was established by the X-ray analysis of its single crystal (Figure 2).

A plausible catalytic cycle for the reaction was depicted in Figure 3. As previously reported,^{12a} the key intermediate α,β -unsaturated acyl azolium I is generated by nucleophilic addition of NHC catalyst to bromoenal followed by elimination of bromide. The addition of enamine anion 1', generated from indoline-2-imines in the presence of base, to α,β -unsaturated acyl azolium intermediate I gives adduct II, which is transformed to enamine anion III via proton transfer. Subsequent lactamization yields the final [3 + 3] annulation product 3 and regenerates NHC catalyst.

In conclusion, the N-heterocyclic carbene-catalyzed [3 + 3] annulation of indolin-2-imines and bromoenals was developed to give dihydropyridinone-fused indoles in good to high yields. The cycloadduct could be transformed to α -carbolines with different 2-substituents by dehydrogenation, tosylation, and palladium-catalyzed coupling reactions. Further development of NHC-catalyzed [3 + 3] annulation reactions is underway in our laboratory.

Figure 3. Plausible catalytic cycle.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b00820.

Experimental details and NMR spectra for obtained compounds (PDF) X-ray data for 3da (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: songye@iccas.ac.cn. *E-mail: dequn.sun@sdu.edu.cn.

ORCID 0

Song Ye: 0000-0002-3962-7738

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Nos 21425207, 21521002) and the Chinese Academy of Sciences is greatly acknowledged.

REFERENCES

(1) (a) Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.
(b) Gil, C.; Brase, S. J. Comb. Chem. 2009, 11, 175. (c) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. (d) Shiri, M. Chem. Rev. 2012, 112, 3508.

(2) For selected examples, see: (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. *Chem. Rev.* **2010**, *110*, 4489. (b) O'Connor, S. E. J.; Maresh, J. *Nat. Prod. Rep.* **2006**, *23*, 532. (c) Fang, Z.-F.; Yu, S.-S.; Ma, S.-G.; Xu, S.; Li, Y.; Qu, J.; Ren, J.-H.; Li, L.; Si, Y.-K.; Chen, X.-G. *J. Nat. Prod.* **2011**, *74*, 2438.

(3) For selected examples, see: (a) Bull, J. A. J.; Mousseau, J.; Pelletier, G.; Charette, A. B. *Chem. Rev.* **2012**, *112*, 2642. (b) Michael, J. P. *Nat. Prod. Rep.* **2005**, *22*, 627. (c) Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, B.-S.; Jeong, T. C.; Lee, C.-S.; Lee, E.-S. *Bioorg. Med. Chem.* **2007**, *15*, 4351. (d) Reddy, T. R. K.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V. J.; Pratt, S.; Chen, B. J. Med. Chem. **2006**, *49*, 607. (e) Guo,

K.; Mutter, R.; Heal, W.; Reddy, T. R. K.; Cope, H.; Pratt, S.; Thompson, M. J.; Chen, B. *Eur. J. Med. Chem.* **2008**, 43, 93. (f) Kim, D.-G.; Kang, Y.; Lee, H.; Lee, E. K.; Nam, T.-g.; Kim, J.-A.; Jeong, B.-S. *Eur. J. Med. Chem.* **2014**, 78, 126.

(4) For selected examples, see: (a) Moquin-Pattey, C.; Guyot, M. *Tetrahedron* **1989**, 45, 3445. (b) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. *Angew. Chem., Int. Ed.* **2005**, 44, 3280. (c) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. *J. Org. Chem.* **1995**, 60, 5899. (d) Kim, J.-S.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. *Tetrahedron Lett.* **1997**, 38, 3431. (e) Rajanarendar, E.; Govardhan Reddy, K.; Ramakrishna, S.; Nagi Reddy, M.; Shireesha, B.; Durgaiah, G.; Reddy, Y. N. *Bioorg. Med. Chem. Lett.* **2012**, 22, 6677. (f) Sharaf, M. H. M.; Schiff, P. L.; Tackie, A. N.; Phoebe, C. H.; Martin, G. E. J. *J. Heterocycl. Chem.* **1996**, 33, 239. (g) Bolton, D.; Forbes, I. T.; Hayward, C. J.; Piper, D. C.; Thomas, D. R.; Thompson, M.; Upton, N. *Bioorg. Med. Chem. Lett.* **1993**, 3, 1941. (h) Ueshima, K.; Akihisa-Umeno, H.; Nagayoshi, A.; Takakura, S.; Matsuo, M.; Mutoh, S. *Biol. Pharm. Bull.* **2005**, 28, 247. (i) Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. *Tetrahedron Lett.* **1996**, 37, 1703.

(5) (a) Robinson, R.; Thornley, S. *J. Chem. Soc., Trans.* **1924**, *125*, 2169. (b) Vera-Luque, P.; Alajarín, R.; Alvarez-Builla, J.; Vaquero, J. J. *Org. Lett.* **2006**, *8*, 415.

(6) Tahri, A.; Buysens, K. J.; Van der Eycken, E. V.; Vandenberghe, D. M.; Hoornaert, G. J. *Tetrahedron* **1998**, *54*, 13211.

(7) Kumar, A. S.; Nagarajan, R. Org. Lett. 2011, 13, 1398.

(8) (a) Iwaki, T.; Yasuhara, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans.
1 1999, 1505. (b) Hostyn, S.; Van Baelen, G.; Lemière, G. L. F.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 2653. (c) Laha, J. K.; Petrou, P.; Cuny, G. D. J. Org. Chem. 2009, 74, 3152. (d) Pudlo, M.; Csányi, D.; Moreau, F.; Hajós, G.; Riedl, Z.; Sapi, J. Tetrahedron 2007, 63, 10320. (9) (a) Bunyan, P. J. J.; Cadogan, J. I. G. J. Chem. Soc. 1963, 42.

(b) Smitrovich, J. H.; Davies, I. W. Org. Lett. 2004, 6, 533.

(10) Markey, S. J.; Lewis, W.; Moody, C. J. Org. Lett. 2013, 15, 6306. (11) For selected reviews on NHC catalysis, see: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (b) Marion, N.; Díez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (c) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336. (d) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53. (e) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (f) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617. (g) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. (h) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. (i) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (j) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. (k) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. (1) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.

(12) (a) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134. (b) Kravina, A. G.; Mahatthananchai, J.; Bode, J. W. Angew. Chem, Int. Ed. 2012, 51, 9433. (c) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem, Int. Ed. 2013, 52, 8592. (d) Gao, Z.-H.; Chen, X.-Y.; Zhang, H.-M.; Ye, S. Chem. Commun. 2015, 51, 12040.

(13) For selected examples, see: (a) Sorkin, E. M.; Clissold, S. P.; Brogden, R. N. *Drugs* **1985**, *30*, 182. (b) Lewis, J. R. *Nat. Prod. Rep.* **1994**, *11*, 329. (c) Pettit, G. R.; Groszek, G.; Backhaus, R. A.; Doubek, D. L.; Barr, R. J.; Meerow, A. W. *J. Nat. Prod.* **1995**, *58*, 756.

(14) Portmann, C.; Prestinari, C.; Myers, T.; Scharte, J.; Gademann, K. *ChemBioChem* **2009**, *10*, 889.

(15) Yeh, P.-P.; Daniels, D. S. B.; Fallan, C.; Gould, E.; Simal, C.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. *Org. Biomol. Chem.* **2015**, *13*, 2177.

(16) (a) Yang, J.; Liu, S.; Zheng, J.-F.; Zhou, J. *Eur. J. Org. Chem.* **2012**, 2012, 6248. (b) Gøgsig, T. M.; Lindhardt, A. T.; Dekhane, M.; Grouleff, J.; Skrydstrup, T. *Chem. - Eur. J.* **2009**, *15*, 5950. (c) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. *Angew. Chem., Int. Ed.* **2012**, *51*, 5915. (d) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager, S.; Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. *J. Am. Chem. Soc.* **2012**, *134*, 443. (e) Gao, C.-Y.; Yang, L.-M. *J. Org. Chem.* **2008**, *73*, 1624.