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ABSTRACT: We describe a Pd-catalyzed selective C−H
arylation reaction of phenylacetaldehydes using L-valine as the
transient directing group. This process showed a broad substrate
scope and excellent selectivity in which a ligand-controlled
functionalization of the unactivated β-C(sp3)−H bond. In
addition, enantioselective arylation of phenylacetaldehydes was
preliminarily explored by utilizing a bulky chiral transient directing
group.

Palladium-catalyzed C−H activations is a powerful vehicle
for C−C and C−X (heteroatom) bond formation during

the past decades.1 Substrates that contain an auxiliary directing
group have been broadly exploited in selective C−H bond
activation reactions,1,2 although preinstalling directing groups
on substrates reduce the overall efficiency. Recently, the
transient directing group has emerged as a hot topic in the field
of C−H bond activations3 because a reversible intermediate
such as imine could be formed between a substrate and a
ligand, simplifying the manipulation steps of traditional C−H
bond activations.4,5 Many remarkable endeavors have been
made to develop transient directing group strategy in C−H
bonds activations.3−5 Generally, C(sp2)−H bond activation is
prior than that of C(sp3)−H bonds in such metal-catalyzed
reactions.6 Many published examples report functionalization
of C(sp2 or sp3)−H bonds separately in different substrates.7

Studies on the selective C(sp2 or sp3)−H bond activation in
one molecule remains a challenge.8

Recently, we reported a glycine assisted C(sp2)−H arylation
and in situ tandem reaction of phenylacetaldehydes, a variety
of functionalized phenanthrenes were prepared with a
satisfactory results (Scheme 1).9 On the basis of our and
other groups’ work, we envisioned that the β-C(sp3)−H
arylation of phenylacetaldehydes with aryl iodides would be
realized utilizing a similar strategy. We describe herein a new
protocol for the highly site-selective C(sp3)−H bonds
activation in one molecule under the assistance of a transient
directing group, delivering aldehydes with a homobenzylic
(stereo)centers (Scheme 1), which are highly prevalent in
natural products and medicinally relevant compounds.10 The
principal challenges of this approach arise from (1) the need to
find appropriate reaction conditions to efficiently avoid the
generation of a six-membered palladacycle11 and (2) selective
C(sp3)−H bonds activation to give β-mono- or β,β′-diary-
lation products.

We initiated to evaluate the palladium(II)-catalyzed cross
coupling reaction of 2-methyl-2-phenylpropanal (1a) and
iodobenzene (2a) in a cosolvent (hexafluoroisopropanol
(HFIP)/AcOH, 1/1) under a nitrogen atmosphere at 125
°C for 12 h in the presence of glycine (L1) as the ligand and
AgTFA as the additive (Table 1). Encouragingly, the expected
arylated product 3a and a small amount of diarylation product
3a′ (3%) were isolated, together with a C(sp2)−H activation
and cyclization product phenanthrene 4a in 27% yield. To
increase the reactivity and site selectivity of this conversion,
various ligands (L1−L8) were screened (entries 2−8). A
significantly increase in this reaction was realized with
substituted 2-aminopropanoic acids L2−L4 as the ligands
(entries 2−4), the yield of 3 was improved (61%, mono/di =
50:11) with the C(sp2)−H arylation completely prevented by
using L3 as the transient directing group (entry 3). Obviously,
α-substituted amino acids returned good selectivity of C(sp3)−
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Scheme 1. Pd-Catalyzed Selective C−H Activation
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H arylation, suggesting that the formation of the 5-membered
palladacycle is strengthened by the larger substituents of α-
amino acids, probably due to the Thorpe−Ingold effect
(entries 1 vs 2−4). 3-Aminopropanoic acid (L5) was also
tested and afforded poor selectivity (entry 5). No reaction was
detected when L6 was used (entry 6). Further screening of
ligand with either L7 or L8 afforded an inferior result (entries
7 and 8). A control experiment indicated that the transient
directing group was absolutely critical in this approach (entry
9). Then various palladium catalysts were conducted, but all
returned low yields (entries 12−15). Besides AgTFA, we
further used AgOAc, Ag2CO3, and Ag2O as silver salts, and the
desired product 3 also could be obtained with inferior reaction
performance (entries 16−18).
In order to gauge the scope and generality of the newly

established method, a series of structurally diverse aryl iodides
were tested under the optimal reaction conditions. The results
are shown in Scheme 2, where aryl iodides containing an
electron-donating group (3j) or electron-withdrawing groups
(3f−h, 3l) were well accommodated. Meanwhile, aryl iodides
with the substituents F, Cl, and Br at the para, meta, or ortho

position all proceeded smoothly with moderate yields and thus
enabled further transformations of products via cross-coupling
reactions (3b−3e, 3k). Besides, 3m was also obtained when 2-
iodonaphthalene was employed. Generally, mixed products of
mono and diarylation were detected in this process.
Interestingly, methyl 4-iodobenzoate, 4-nitroiodobenzene, 4-
(trifluoromethyl)iodobenzene, and methyl 3-iodobenzoate
bearing strong electron-withdrawing groups or naphthyl
returned only monoarylation products (3f−3h, 3l, and 3m).
All of the reactions showed excellent site selectivity with
moderate to good reactivity. Nonetheless, the heterocyclic aryl
iodines such as 3-iodopyridine and 2,6-dichloro-4-iodopyridine
gave no desired products.
Afterward, we proceeded to explore the scope with regard to

the various substituted aldehydes by using a coupling partner
2f. As shown in Scheme 3, ortho-, meta-, and para substitutions
as well as disubstituted methylenedioxy and naphthyl are also
well tolerated in this reaction (3n−3w). Aldehyde bearing an
ethyl at the α-position was also suitable substrates for the
catalytic process to yield the desired product 3x. Remarkably,
arylation occurred only at the methyl group, and no benzylic
methylene product was detected under these conditions (3y).
Notably, no diarylation products were observed in these
reactions. Unfortunately, nonquaternary carbon aldehydes
such as 2-phenylpropanal and 2-methylpentanal returned no
desired product.

Table 1. Optimization of the Reaction Conditionsa

yieldb

entry solvent ligand additive 3a 3a′ 4a

1 HFIP/AcOH (1/1) L1 AgTFA 18 3 27
2 HFIP/AcOH (1/1) L2 AgTFA 39 8 8
3 HFIP/AcOH (1/1) L3 AgTFA 50 11
4 HFIP/AcOH (1/1) L4 AgTFA 46 7
5 HFIP/AcOH (1/1) L5 AgTFA 19 22 5
6 HFIP/AcOH (1/1) L6 AgTFA
7 HFIP/AcOH (1/1) L7 AgTFA 6
8 HFIP/AcOH (1/1) L8 AgTFA 3
9 HFIP/AcOH (1/1) AgTFA
10 HFIP/AcOH (3/1) L3 AgTFA 42 6 5
11 HFIP/AcOH (1/3) L3 AgTFA 43 4
12c HFIP/AcOH (1/1) L3 AgTFA 46 6 trace
13d HFIP/AcOH (1/1) L3 AgTFA 28 3
14e HFIP/AcOH (1/1) L3 AgTFA 24 trace
15f HFIP/AcOH (1/1) L3 AgTFA 18 trace
16 HFIP/AcOH (1/1) L3 AgOAc 30 4
17 HFIP/AcOH (1/1) L3 Ag2CO3 19 trace
18 HFIP/AcOH (1/1) L3 Ag2O 15

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd source (0.03
mmol), L (0.08 mmol), additive (0.3 mmol), solvent (1.0 mL), N2,
125 °C, 12 h. bIsolated yields. cPd(TFA)2 as Pd source. dPd-
(PPh3)2Cl2 as Pd source. e[PdCl(η3-C3H5)]2 as Pd source. fPdCl2 as
Pd source.

Scheme 2. Scope of Aryl Iodidesa

aReaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Pd(OAc)2 (0.03
mmol), L3 (0.08 mmol), AgTFA (0.32 mmol), [HFIP/AcOH (1/1,
v/v) 1.0 mL], 12 h, N2. Isolated yields.
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To demonstrate the potential application of this newly
developed protocol, a scaled-up experiment using 1a with
methyl 4-iodobenzoate was conducted (Scheme 4). As a result,
arylated product 3f could be prepared in 47% yield under
similar conditions. Application of this strategy to the
enantioselective arylation of 1o was then examined, and the
reaction proceeded successfully with L-tert-leucine and
produced the corresponding product 3o (43%) with a
promising enantiomeric ratio (er) of 70:30 (Scheme 4).
Unfortunately, a detailed screening of a range of chiral amino
acids (C1−C10) and substrates returned no further improve-
ment of the enantioselectivity (see the SI for details).
In conclusion, we have achieved a palladium-catalyzed highly

site-selective C(sp3)−H arylation reaction of phenylacetalde-
hydes with aryl iodides by using a easily available transient
directing group. Attractive features of this method include
broad substrate scope and excellent regioselectivity, wherein
the functionalization of benzylic methylene or γ-C(sp2)−H
bonds could be effectively avoided. The detailed mechanistic
studies and further efforts to improve enantioselectivity with
this reaction using novel chiral amino acids are underway.
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