

Accepted Article

Title: NHC-Coordinated Diphosphene Stabilized Gold(I) Hydride and its Reversible Conversion to Gold(I) Formate with CO2

Authors: Anukul Jana, Debabrata Dhara, Shubhajit Das, Swapan Pati, David Scheschkewitz, and Vadapalli Chandrasekhar

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201909798 Angew. Chem. 10.1002/ange.201909798

Link to VoR: http://dx.doi.org/10.1002/anie.201909798 http://dx.doi.org/10.1002/ange.201909798

WILEY-VCH

WILEY-VCH

NHC-Coordinated Diphosphene Stabilized Gold(I) Hydride and its Reversible Conversion to Gold(I) Formate with CO₂

Debabrata Dhara,^[a] Shubhajit Das,^[b] Swapan K. Pati,^{*[b]} David Scheschkewitz,^{*[c]} Vadapalli Chandrasekhar,*^{[a],[d]} and Anukul Jana*^[a]

Dedicated to Professor C. N. R. Rao on occasion of his 85th birthday.

Abstract: An NHC-coordinated diphosphene is employed as ligand for the synthesis of a hydrocarbon-soluble monomeric Au(I) hydride, which readily adds CO2 at room temperature yielding the corresponding Au(I) formate. The reversible reaction can be expedited by the addition of NHC, which induces β -hydride shift and the removal of CO_2 from equilibrium through the formation of an NHC-CO2 adduct. The Au(I) formate is alternatively formed by dehydrogenative coupling of the Au(I) hydride with formic acid (HCO₂H), thus in total establishing a reaction sequence for the Au(I) hydride mediated dehydrogenation of HCO₂H as chemical hydrogen storage material.

Tertiary phosphines, I (Scheme 1) are ubiquitous ligands and thus play an important role in the organometallic chemistry of transition metals^[1] and thereby also in the area of homogenous catalysis.^[2] Celebrated examples of the use of phosphines include, Wilkinson's catalyst,^[3] Noyori's catalyst,^[4] and the first generation Grubbs catalyst.^[5] Other phosphorus-based species such as diphosphenes II,^[6] and base-stabilized phosphinidenes III^[7] (Scheme 1) have also found applications as ligands in transition metal complexes. In contrast, Bertrand's base-free phosphino phosphinidene is electrophilic in nature.^[8] None of these P-centered donors (I-III), however, can compete with carbenes in terms of the stabilization of reactive intermediates.^[9]

Recently, we have reported the reversible coordination of an NHC to a diphosphene to yield IV (Scheme 1), which possesses two nonbonding electron pairs at the dicoordinate Pcenter.^[10] Frontier orbital analysis revealed that the HOMO almost exclusively consists of a p-orbital at the formally negatively charged dicoordinate phosphorus center. Theoretical calculations further suggest that the NHC-coordinated diphosphene should be a stronger donor than Ph₃P.^[11] Moreover, the calculated binding energy of IV to AuCl is -61.1 kcal/mol which is higher in comparison to I (-50.1 kcal/mol), II (-38.5 kcal/mol), and III (-55.8 kcal/mol).^[11] Armed with this knowledge, we sought to utilize IV as a ligand towards gold(I) hydride. The monomeric parent Au(I) hydride (AuH) is kinetically unstable and has only been observed in cold matrices^[12] and considered as an intermediate in numerous gold-catalyzed organic transformations.^[13] With an NHC as a stabilizing ligand, it was isolated as a room temperature stable compound.^[14]

Herein, we thus disclose the use of IV as a new Pcentered neutral ligand that ultimately allowed for the isolation of a monomeric Au(I) hydride complex, which in turn is shown to undergo the first hydroauration reaction of CO₂ to form the corresponding Au(I) formate. Surprisingly, the Au(I) formate spontaneously releases CO₂ even at room temperature, a process that is facilitated by the presence of NHC. We further show that the Au(I) formate is also accessible by the dehydrogenation of HCO₂H (a chemical hydrogen storage material) $^{\left[15\right] }$ by the Au(I) hydride, thus stoichiometrically demonstrating its principal potential as dehydrogenation catalyst. Reversible hydrogenation of CO₂ is known by the bacterial enzyme carbondioxide reductase.^[16] In an analogous manner we report a synthetic system that shows reversible hydroauration behavior of a Au(I) hydride.

Supporting information for this article is given via a link at the end of the document.

Scheme 1. Chemical structures of I-IV (R = monoanionic ligand, NHC = Nheterocyclic carbene).

The reaction of AuCl-SMe₂ with a 1:1 solution of NHC^{Me₄[17]} diphosphene 1^[18] in THF at -78 °C yields the and NHC^{Me4}/diphosphene-coordinated Au(I) chloride complex 2 (Scheme 2).^[11] Formation of 2 reveals the ability of the diphosphene motif to act simultaneously both as a Lewis acid and a Lewis base in analogy to compounds with heavier Group 14 multiple bonds.^[19] The ³¹P NMR spectrum of 2 exhibits two doublets at δ = 1.34 and -31.46 ppm with ${}^{1}J_{PP}$ = 462 Hz, which is in between the values of $1 \cdot \text{NHC}^{\text{Me}_4}$ $({}^1J_{\text{PP}} = 423 \text{ Hz})^{[10]}$ and the monoaurated adduct, Mes*(AuCl)P=PMes* (${}^{1}J_{PP} = 539 \text{ Hz}$).^[20]

Manusc

oted Manuscr

COMMUNICATION

Scheme 2. Synthesis of NHC^{Me4}-coordinated diphosphene stabilized Au(I)-Cl complex, **2** (Ar = $2,6-Mes_2C_6H_3$, Mes = $2,4,6-Me_3C_6H_2$).

Interestingly, in solution, the coordinated NHC^{Me_4} does not dissociate unlike **1**·NHC^{Me_4} that exists in equilibrium with **1** and NHC^{Me_4} .^[10] The stability of **2** is probably due to the coordination of the diphosphene moiety to AuCl, which enhances the electrophilicity of the second *P* center resulting in stronger binding to NHC^{Me_4} . This is also supported by DFT calculations on the highly endergonic dissociation of NHC^{Me_4} from **2** (21.8 vs. 6.7 kcal/mol from **1**·NHC^{Me_4}) in THF.^[11]

The molecular structure of **2** was confirmed by single crystal X-ray diffraction (Figure 1). The P–Au bond distance (2.2540(8) Å) in **2** is longer than those of Ph₃P·AuCl (Au–P 2.235 Å)^[21] and the corresponding diaurated adduct of Mes*-substituted diphosphene, Mes*(AuCl)P=P(AuCl)Mes* (2.201 Å).^[20] The P1–P2 bond distance is 2.219(1) Å and thus considerably longer than in free diphosphene **1** (2.029 Å)^[22] or **1·NHC^{Me4}** (2.134 Å).^[10]

Figure 1. Molecular structure of **2** with thermal ellipsoids at 50% probability level. All hydrogen atoms and one molecule of co-crystallized toluene are omitted for clarity.

The 1:1 reaction of **2** with *N*-selectride at -78 °C affords the NHC/diphosphene-stabilized Au(I) hydride, **3** in 90 % yield as light yellow crystals (Scheme 3). The ³¹P NMR spectrum of **3** exhibits two resonances at $\delta = 1.6$ ppm as doublet (¹J_{PP} = 470

Hz) and at δ = -14.5 ppm as a doublet of doublets (¹*J*_{PP} = 470 Hz, ²*J*_{PH} = 138 Hz).

Scheme 3. Synthesis of NHC-coordinated diphosphene stabilized Au(I)hydride, 3 and it's rearrangement to 4.

In the ¹H NMR spectrum, the doublet at δ = 4.60 ppm (²J_{PH} = 138 Hz) can be unambiguously assigned to the Au–*H* resonance, which is upfield shifted in comparison to that of NHC^{Dip}-stabilized Au(I)-hydride (5.11 ppm).^[12a] The IR spectrum of **3** shows a strong sharp band at 1893 cm⁻¹ for the Au-H motif, in good agreement with the calculated value (1880.2 cm⁻¹).^[11]

The molecular structure of **3** (Figure 2) reveals a P–P bond distance of 2.197(1) Å, which is slightly shorter than the P–P bond distance in **2** due to less pronounced π -back-donation. Indeed, the P–Au bond distance in **3** of 2.3297(9) Å is larger than the 2.2540(8) Å in **2** suggesting a stronger trans influence of the hydride compared to the chloride ligand. The Au(I) hydride **3** is stable in presence of degassed water in toluene overnight; a solid-crystalline sample even persists in open air at least for two days.

Figure 2. Molecular structure of **3** with thermal ellipsoids at 50% probability level. All H atoms except Au-H and one co-crystallized molecule of benzene are omitted for clarity.

In solution, however, **3** slowly undergoes a 1,3-hydrogen shift from the Au center to the β -phosphorus atom resulting in the Au(I) phosphinophosphide **4** as shown by the appearance of a ¹H NMR doublet of doublets at δ = 4.19 ppm (dd, ¹*J*_{PH} = 214. Hz, ²*J*_{PH} = 9 Hz). The concomitant migration of the NHC ligand from the phosphorus to the gold center is evident from the significantly smaller coupling of the ¹³C{¹H} signal at δ = 193.6 ppm of the carbonic carbon atom to the nearest ³¹P nucleus

 $({}^{2}J_{CP} = 53$ Hz for **4** vs. ${}^{1}J_{CP} = 99$ Hz for **2**). Conversion is completed by heating to 65 °C for one hour. According to our DFT results, the rearrangement of **3** to **4** is exergonic by 26.1 kcal/mol.^[11] The structure of the NHC-stabilized Au(I) phosphinophosphide **4** was finally confirmed by X-ray diffraction on single crystals (Figure 3). The P–P bond distance of **4** is 2.218(1) Å and thus slightly longer than in the one of the reported boryl substituted lithium phosphinophosphide (2.1775 Å).^[23]

Figure 3. Molecular structure of **4** with thermal ellipsoids at 50% probability level. All hydrogen atoms and one molecule of co-crystallized hexane solvent molecule are omitted for clarity.

In order to address the hydridic character of the Au-*H* moiety of **3**, we considered the hydroauration reaction with CO₂. The hydrometallation of carbonyl compounds, in particular of CO₂, is a key step of catalytic conversions to access C1-feedstock materials.^[24] In fact, the formation of **5** from **3** and CO₂ is computed to be exergonic by 11.6 kcal/mol.^[11] Upon passing CO₂ gas into a toluene solution of **3** at room temperature, the quantitative formation of Au(I) formate **5** was observed based on ³¹P NMR of the reaction mixture (Scheme 4).

 $\ensuremath{\textit{Scheme}}$ 4. Synthesis of NHC-coordinated diphosphene stabilized Au(I)-formate, 5.

The ¹H NMR spectrum of **5** exhibits a doublet centered at δ = 9.50 ppm (⁴*J*_{HP} = 7 Hz), in line with the suggested formate as is a prominent IR band at 1884 cm⁻¹ for the C=O stretching frequency. The molecular structure of **5** was confirmed by X-ray

crystallography (Figure 4). The Au–O bond distance in the Au(I) formate **5** of 2.140(4) Å is slightly longer than that of a reported Au(III) formate (2.102 Å).^[25] To the best of our knowledge, the formation of **5** represents the first example of any gold formate obtained by *direct* hydroauration of CO₂.

Figure 4. Molecular structure of 5 with thermal ellipsoids at 50% probability level. All hydrogen atoms and one molecule of toluene are omitted for clarity.

We had noted that the ³¹P NMR spectrum of the residue after removal of the solvent shows the presence of about 5 % of the starting Au(I) hydride, **3**. This observation prompted us to further investigate a possible spontaneous release of CO₂ from **5**. The release of CO₂/HCO₂⁻ from transition-metal formates is wellknown^[26] and the reductive elimination of CO₂ from a binuclear Au(II)/CO₂ complex has been reported.^[27] Indeed, the application of 0.12 mbar vacuum for 15 h results in the original Au(I)-hydride **3** in about 50%. Decarboxylation of **5** above 65 °C proceeds to complete conversion, but also affords **4**, the thermal isomerization product of **3** as side product.

Scheme 5. NHC ${}^{I\!Pr_2Me_2}$ -mediated release of CO₂ from Au(I)-formate, 3.

To facilitate the release of CO₂, we added **NHC^{Pr2Me2[14]}** in the anticipation that it might induce the required 1,3-H shift (β -hydride elimination)^[28] by coordination to the carbonyl group and removal of CO₂ from equilibrium as NHC^{Pr2Me2}-CO₂ adduct **6**.^[29] Addition of one equivalent of **NHC^{Pr2Me2}** to a solution of **5** at room temperature indeed resulted in the immediate formation of **3** (Scheme 5).

In order to verify the CO₂ release at lower temperatures and to check for intermediates, we carried out a VT-NMR study of a 1:1 toluene-d₈ solution of $\text{NHC}^{iPr_2Me_2}$ and 5. At -78 °C, the ³¹P NMR spectrum does not show any indication for the release of CO₂. At -10 °C, we observed one new set of peaks at $\delta = -35.2$ and 0.9 ppm (${}^{1}J_{PP}$ = 465 Hz). These resonances disappear while approaching room temperature with the concomitant appearance of the resonances of 3. The occurrence of an intermediate suggests that the reaction may indeed proceed through the initial coordination of NHC^{/Pr2Me2} to the carbonyl carbon centre of 5 to give the thermally unstable adduct 7: in analogy to the nucleophilic coordination of NHC to aldehydes.^[30] Subsequent hydride migration (β -hydride elimination) would lead to the NHC^{/Pr₂Me₂} adduct of CO₂ 6 and Au(I) hydride 3 (Scheme 5). The calculated Gibbs free energy values confirm that the reaction **5** + **NHC**^{Pr_2Me_2} \rightarrow **3** + **6** is endergonic by 7.4 kcal/mol.^[11]

Finally, we contemplated the use of the NHC/diphosphene coordinated Au(I) hydride **3** for the dehydrogenation of HCO₂H. The stoichiometric reaction of **3** and HCO₂H indeed results in the Au(I) formate **5** with elimination of H₂ (Scheme 6). Computationally, the formation of **5** from **3** and HCO₂H is thermodynamically favourable by 13.5 kcal/mol.^[11]

Scheme 6. Au(I)-hydride, **3** mediated release of H_2 and CO_2 from HCO_2H (Inset: Reaction of HCO_2H to CO_2 and H_2).

In conclusion, we herewith disclosed a water-stable monomeric terminal Au(I)-hydride coordinated by an NHC/diphosphene adduct. Like other heavier Group 14 multiple bonds, the diphosphene can simultaneously act as a Lewis acid and as a Lewis base. The Au(I) hydride exhibits pronounced hydridic character and thus reacts with CO₂ to the corresponding Au(I)-formate, which spontaneously releases CO₂ at room temperature, a feature that typically requires much higher temperatures.^[31] The alternative formation of formate from Au(I)hydride and HCO₂H with release of H₂ suggests that a thermally more stable Au(I)-hydride might indeed be a competent catalyst for the release of H₂ from HCO₂H, a chemical hydrogen storage material at ambient conditions.[32]

Acknowledgements

This work is supported by the Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, Telangana,

India and Research Group Linkage Programme (between TIFR Hyderabad, India and Saarland University, Germany), AvH Foundation, Germany. VC is thankful to the DST, New Delhi, India, for a National J. C. Bose fellowship. SD thanks CSIR, New Delhi, India and JNCASR for fellowship. SKP acknowledges research support from DST, New Delhi, India. We are grateful to the reviewers for their critical insights to improve the quality of the manuscript.

Keywords: carbon dioxide • diphosphene • gold • ligand design • phosphorus

- a) R. H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, Fourth Edition, John Wiley & Sons, Inc. 2005; b) J. F. Hartwig, *Organotransition Metal Chemistry From Bonding to Catalysis*, University Science Books, Sausalito, 2010; c) J.-P. Corbet, G. Mignani, *Chem. Rev.* 2006, *106*, 2651–2710; d) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, *Chem. Rev.* 2000, *100*, 2741–2769.
- a) C. A. Tolman, *Chem. Rev.* 1977, 77, 313–348; b) H. Guo, Y. C. Fan,
 Z. Sun, Y. Wu, O. Kwon, *Chem. Rev.* 2018, *118*, 10049–10293.
- [3] J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711–1732.
- [4] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109, 5856–5858.
- S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1992, 114, 3974–3975.
- [6] a) M. Yoshifuji, *Eur. J. Inorg. Chem.* 2016, 607–615; b) A. H. Cowley, J. E. Kilduff, J. G. Lasch, N. C. Norman, M. Pakulski, F. Ando, T. C. Wright, *J. Am. Chem. Soc.*, 1983, *105*, 7751–7752; c) A. H. Cowley, J. E. Kilduff, J. G. Lasch, N. C. Norman, M. Pakulski, F. Ando, T. C. Wright, *Organometallics*, 1984, *3*, 1044–1050; d) K. M. Flynn, M. M. Olmstead, P. P. Power, *J. Am. Chem. Soc.* 1983, *105*, 2085–2086.
- [7] a) M. Peters, A. Doddi, T. Bannenberg, M. Freytag, P. G. Jones, M. Tamm, *Inorg. Chem.* 2017, 56, 10785–10793; b) T. G. Larocque, G. G. Lavoie, *New J. Chem.* 2014, *38*, 499–502; c) V. A. K. Adiraju, M. Yousufuddin, H. V. R. Dias, *Dalton Trans.* 2015, *44*, 4449–4454; d) A. Doddi, D. Bockfeld, A. Nasr, T. Bannenberg, P. G. Jones, M. Tamm, *Chem.-Eur. J.* 2015, *21*, 16178–16189; e) Bockfeld, D. Doddi, A. Jones, P. G. Tamm, M. *Eur. J. Inorg. Chem.* 2016, *2016*, 3704–3713.
- [8] a) L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, *Chem* **2016**, *1*, 147–153; b)
 M. M. Hansmann, R. Jazzar, G. Bertrand, *J. Am. Chem. Soc.* **2016**, *138*, 8356–8359.
- Recent reviews: a) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner,
 A. Porzelt, S. Inoue, *Chem. Rev.* 2018, *118*, 9678–9842; b) J. Cheng, L.
 Wang, P. Wang, L. Deng, *Chem. Rev.* 2018, *118*, 9930–9987; c) M.
 Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, *Angew. Chem.* 2017, *129*, 10180–10203; *Angew. Chem. Int. Ed.* 2017, *56*, 10046–10068.
- [10] D. Dhara, P. Kalita, S. Mondal, R. S. Narayanan, K. R. Mote, V. Huch, M. Zimmer, C. B. Yildiz, D. Scheschkewitz, V. Chandrasekhar, A. Jana, *Chem. Sci.* 2018, 9, 4235–4243.
- [11] See Supporting Information for the calculation of TEP for 1.NHC^{Me4}, experimental details, and computational details.
- [12] X. Wang, L. Andrews, J. Am. Chem. Soc. 2001, 123, 12899–12900.
- [13] A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064– 8105; Angew. Chem. Int. Ed. 2006, 45, 7896–7936.
- [14] a) E. Y. Tsui, M. Peter, J. P. Sadighi, Angew. Chem. 2008, 120, 9069–9072; Angew. Chem. Int. Ed. 2008, 47, 8937–8940; b) S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742–2744; c) H. Lv, J. H. Zhan, Y. B. Cai, Y. Yu, B. Wang, J. L. Zhang, J. Am. Chem. Soc. 2012, 134, 16216–16227; d) N. Phillips, T. Dodson, R. Tirfoin, J. I. Bates, S. Aldridge, Chem. Eur. J. 2014, 20, 16721–16731; e) D. Gasperini, A. Collado, A. G. Suarez, D. B. Cordes, A. M. Z. Slawin, S. P. Nolan, Chem. Eur. J. 2015, 21, 5403–5412; f) A. J. Jordan, G. Lalic, J. P. Sadighi, Chem. Rev. 2016, 116, 8318–8372.

- [15] a) D. Mellmann, P. Sponholz, H. Junge, M. Beller, *Chem. Soc. Rev.* 2016, 45, 3954–3988; b) A. K. Singh, S. Singh, A. Kumar, *Catal. Sci. Technol.* 2016, 6, 12–40.
- [16] a) K. Schuchmann, V. Müller, *Science* **2013**, *342*, 1382–1385; b) I. A. C. Perrira, *Science* **2013**, *342*, 1329–1330.
- [17] N. Kuhn, T. Kratz, Synthesis 1993, 561-562.
- [18] E. Urnéžius, J. D. Protasiewicz, Main Group Chem. 1996, 1, 369–372.
- [19] a) T. Yamaguchi, A. Sekiguchi, M. Driess, J. Am. Chem. Soc. 2010, 132, 14061–14063; b) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Angew. Chem. 2011, 123, 8504–8507; Angew. Chem. Int. Ed. 2011, 50, 8354–8357; c) S. M. I. Al-Rafia, M. R. Morneni, M. J. Ferguson, R. McDonald, A. Brown, E. Rivard, Organometallics 2013, 32, 6658–6665; d) A. Jana, V. Huch, H. S. Rzepa, D. Scheschkewitz, Organometallics 2015, 34, 2130–2133.
- [20] D. V. Partyka, M. P. Washington, T. G. Gray, J. B. Updegraff III, J. F. Turner II, J. D. Protasiewicz, J. Am. Chem. Soc. 2009, 131, 10041– 10048.
- [21] N. C. Baenziger, W. E. Bennett, D. M. Soboroff, Acta Cryst. B. 1976, 32, 962–963.
- J. D. Protasiewicz, M. P. Washington, V. B. Gudimetla, J. L. Payton, M. C. Simpson, *Inorg. Chim. Acta* 2010, *364*, 39–45.
- [23] S. S. Asami, M. Okamoto, K. Suzuki, M. Yamashita, Angew. Chem. 2016, 128, 13019–13023; Angew. Chem. Int. Ed. 2016, 55, 12827– 12831.
- [24] a) Y. Yu, A. R. Sadique, J. M. Smith, T. R. Dugan, R. E. Cowley, W. W. Brennessel, C. J. Flaschenriem, E. Bill, T. R. Cundari, P. L. Holland, *J. Am. Chem. Soc.* **2008**, *130*, 6624–6638; b) A. Jana, H. W. Roesky, C. Schulzke, A. Döring, *Angew. Chem.* **2009**, *121*, 1126–1129; *Angew.*

Chem. Int. Ed. **2009**, *48*, 1106–1109; c) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke, *J. Am. Chem. Soc.* **2009**, 131, 1288–1293; d) A. Jana, G. Tavcar, H. W. Roesky, M. John, *Dalton Trans.* **2010**, *39*, 9487–9489; d) A. Hicken, A. J. P. White, M. R. Crimmin, *Angew. Chem.* **2017**, *129*, 15323–15326; *Angew. Chem. Int. Ed.* **2017**, *56*, 15127–15130.

- [25] R. Kumar, J. P. Krieger, E. G. Bengoa, T. Fox, A. Linden, C. Nevado, Angew. Chem. 2017, 129, 1304–13045; Angew. Chem. Int. Ed. 2017, 56, 12862–12865.
- [26] a) T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree, N. Hazari, *J. Am. Chem. Soc.* 2011, *133*, 9274–9277; b) C. Liu, J.-H. Xie, G.-L. Tian, W. Li, Q.-L. Zhou, *Chem. Sci.* 2015, *6*, 2928–2931; c) N. Hazari, J. E. Heimann, *Inorg. Chem.* 2017, *56*, 13655–13678.
- [27] D. A. Rosca, J. F. Cestau, J. Morris, J. A. Wright, M. Bochmann, Sci. Adv. 2015, 1, e1500761.
- [28] a) J. A. Mueller, C. P. Goller, M. S. Sigman, J. Am. Chem. Soc. 2004, 126, 9724–9734; b) O. Blum, D. Milstein, J. Am. Chem. Soc. 1995, 117, 4582–4594; c) S. J. Mitton, L. Turculet, Chem. Eur. J. 2012, 18, 15258–15262; d) H.-W. Suh, D. Balcells, A. J. Edwards, L. M. Guard, N. Hazari, E. A. Mader, B. Q. Mercado, M. Repisky, Inorg. Chem. 2015, 54, 11411–11422.
- [29] N. Kuhn, M. Steimann, G. Weyers, Z. Naturforsch., Teil B 1999, 54, 427–423.
- [30] A. T. Biju, N. Kuhl, F. Glorius, Acc. Chem. Res. 2011, 44, 1182–1195.
- [31] W. H. Bernskoetter, N. Hazari, Acc. Chem. Res. 2017, 50, 1049-1058.
- [32] J. J. A. Celaje, Z. Lu, E. A. Kedzie, N. J. Terrile, J. N. Lo, T. J. Williams, *Nat. Commun.* 2016, 7, 11308.

Accepted Manuscript

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

NHC-coordinated diphosphene has been used as a ligand for the isolation of monomeric gold(I) hydride which readily converted to the corresponding Au(I) formate in either by hydroauration of CO_2 or by dehydrogenative coupling with formic acid. The Au(I) formate in turn loses CO_2 at room temperature upon application of vacuum and this process can be expedited at lower temperatures by using NHC.

Debabrata Dhara, Shubhajit Das, Swapan Pati,* David Scheschkewitz,* Vadapalli Chandrasekhar,* and Anukul Jana*

NHC-Coordinated Diphosphene Stabilized Gold(I) Hydride and its Reversible Conversion to Gold(I) Formate with CO₂