

Subscriber access provided by the Henry Madden Library | California State University, Fresno

Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-stage sp3 C–H Bond Oxidation

Lun Xu, Chao Wang, Ziwei Gao, and Yu-Ming Zhao

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b03015 • Publication Date (Web): 09 Apr 2018 Downloaded from http://pubs.acs.org on April 9, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-stage *sp*³ C–H Bond Oxidation

Lun Xu,[‡] Chao Wang,[‡] Ziwei Gao, and Yu-Ming Zhao^{*}

Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China

ABSTRACT: Herein, we report the first total syntheses of complex cephalotaxus diterpenoids cephanolide B and C from commercially available 5-bromo-2-methylanisole. Key to the success of this synthetic route is a palladium-catalyzed cascade cyclization reaction, which allowed us to efficiently forge the 6-5-6 *cis*-fused tricyclic ring systems found in the entire family of cephalotaxus diterpenoids. Additionally, site-selective late-stage sp^3 C–H bond oxidation served as a key strategic element in the chemical synthesis of cephanolide C.

Introduction

Plants of the *Cephalotaxaceae* family produce an extensive array of structurally diverse natural products with a variety of biological properties, particularly potent antitumor activity.¹ Among these secondary metabolites, cephalotaxus diterpenoids represent a relatively rare and structurally fascinating class of natural products. The first member of the cephalotaxus diterpenoids, harringtonolide (1) (also named hainanolide^{2b}), was isolated from the seeds of cephalotaxus harringtonia in 1978 by Buta et. al and was later shown to have potent activity against human KB cells (IC₅₀ = 43 nM).^{2a,4} To date, over 25 diterpenes with rigid polycyclic frameworks related structurally, and presumably biosynthetically, to 1 have been isolated many of which also possess significant biological activities.³ Very recently, Yue and co-workers isolated new structurally unique norditerpenoids cephanolides A-D (2-5) from cephalotaxus sinensis, a finding which sheds light on plausible biosynthetic scenarios among this large family (Figure 1a).^{3f} Compared with other cephalotaxus diterpenoids, cephanolides A-D represent the first examples which have a rarely encountered aromatic benzenoid ring (A-ring) in this family.

Structurally, cephalotaxus diterpenoids possesses a complex rigid tetracyclic carbon skeleton featuring a cis-fused tricarbocycle (BCD-system), a cyclohexane ring bearing five or six contiguous stereogenic centers (D-ring), and a bridging lactone unit (E-ring). These fascinating architectural attributes, as well as the aforementioned biological activities, have made diterpenoids from Cephalotaxaceae attractive and challenging targets for total synthesis. From the viewpoint of the synthetic chemist, these molecules also provide an ideal platform for the development of new synthetic strategies and the discovery of novel synthetic methodologies. In this context, great effort has been devoted to the total synthesis of 1 resulting in several model studies and three impressive total syntheses.^{5,6} In 1998, Mander and co-workers disclosed the total synthesis of 1, featuring an elegant intramolecular arene cyclopropanation followed by ring expansion strategy,^{5a} work which was a breakthrough in *cepha*lotaxus chemistry. Recently, the groups of Tang and Zhai developed efficient total syntheses of 1 through unique intramolecular cycloaddition strategies, respectively.^{5b,c} However, the remaining members of this family, including cephanolides A-D (2-5), have not been synthesized and successful routes to these molecules may shed further light on their biosynthetic relationships. In developing a general synthetic route to this family, we were drawn to a palladium-catalyzed Heck-type/carbonylative C-H activation cascade between aryl halide 7 and a one-carbon unit provided by carbon monoxide (Figure 1b). We viewed this highly efficient construction of the cephalotaxus diterpene pentacyclic core as an ideal platform to explore the entire family from a common synthetic intermediate. Herein, we document the realization of this maneuver which has resulted in the first total syntheses of cephanolide B (3), and C (4).

Figure 1. (a) Representative cephalotaxus diterpenoids. (b) A palladium-catalyzed cascade cyclization for rapid polycycle assembly.

Result and discussion

Our synthetic studies commenced with the preparation of pentacyclic precursor **12** (Scheme 1). Commercially available 5-bromo-2-methylanisole underwent sequential Negishi-coupling with alkyl zinc bromide $\mathbf{8}$,⁷ and following aromatic Environment

ACS Paragon Plus Environment

60

iodination, ester **9** was generated in 88% over two-steps. Formylation of this material [LDA, HCO₂Me] followed by Cu(OTf)₂-catalyzed Robinson annulation with 3-penten-2-one afforded an inseparable 4:1 mixture of **10** and its diasteromer in 78% overall yield. Pleasingly, stereoselective Luche reduction of this mixture afforded easily chromatographically separable allylic alcohols thus resulting in the isolation of **11** as a single diasteromer. Hydrolysis of **11** with *aq* NaOH in MeOH at 70 °C followed by an EDCI coupling provided the desired precursor lactone **12** in 62% overall yield. It should be noted that this seven-step sequence, which required only four chromatographic purifications, allowed for the preparation of multigram quantities of **12** in the absence of any substantive optimization.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25 26

27 28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

60

With substantial amounts of **12** in hand, we were in a position to test the crucial C–C bond-forming reaction, a palladium-catalyzed cascade annulation of **12** in the presence of carbon monoxide. Though palladium-catalyzed Mizoroki–Heck reactions between aryl halides and alkenes are well-exploited,^{8,9} as are carbonylative processes,¹⁰ to the best of our knowledge, there is only one literature precedence wherein the transformation terminated with an annulative formal C–H activation.^{10a,e} Moreover, this reaction only worked with thiophenes and furans. A palladium-catalyzed this type of carbonylative annulation reactions which terminate with a phenyl ring have not been developed (Scheme 1, **12→6**). Initially, standard palladium-catalyzed Heck conditions [cat. Pd(OAc)₂, PPh₃, K₂CO₃, PhMe, 90 °C]

were examined under carbon monoxide atmosphere; To our surprise, the desired cascade reaction proceeded smoothly and only one cyclized product was obtained. Unfortunately, further structural analysis revealed that the product of the annulation was undesired diastereomer 13, not 6. The structure of 13 was unambiguously confirmed by single crystal X-ray diffraction. Interestingly, incorporation of one equivalent of Ag₂CO₃ as additive could generate the desired 6 as a minor product along with majority of 13 in 34% combined yield (6:13 = 1:1.6). Extensive optimization through varying silver salts, ligand, bases, and solvent, all failed to improve this outcome. Molecular modeling suggests that the face of alkene (C1=C10 double bond) which is closer to the lactone unit in 12, is sterically less hindered, thus resulting in the above-mentioned diastereoselectivity. Taking this analysis in account, we sought to alter the steric constraints surrounding the alkene diastereofaces. It was found that simple reduction of lactone 12 into 14 followed by PPTScatalyzed acetal formation gave 15 as a single diastereomer. An X-ray crystal structure of 15 shows the orientation of methoxy group at C-18, which increases the steric hindrance of one face of the alkene. Much to our delight, subjecting 15 to the palladium-catalyzed cascade cyclization conditions afforded 16 as a single diastereomer in 91% yield. Oxidation of this material $[BF_3:OEt_2, m-CPBA]$ then afforded 6.¹¹ Notably, multigram quantities of 6 are readily prepared in our laboratory through this sequence, which is envisioned to serve as the foundation for syntheses of multiple cephalotaxus diterpenes.

Scheme 1. Synthesis of common pentacyclic core intermediate 6.^{*a*}

"Reagents and conditions: (a) **8** (1.5 equiv), Pd(OAc)₂ (2.0 mol %), SPhos (4.0 mol %), THF, 50 °C, 8 h, 90%; (b) AgOAc (1.0 equiv), I₂ (1.0 equiv), HOAc, 12 h, rt, 98%; (c) LDA (1.5 equiv, 1.0 M in THF), HCOOMe (3.0 equiv), $-78 \text{ °C} \rightarrow \text{rt}$, 5 h; (d) 3-penten-2-one (1.5 equiv), Cu(OTf)₂ (0.2 equiv), THF, 50 °C, 7 days, *78% over two steps*; (e) NaBH₄ (0.8 equiv), CeCl₃·7H₂O (1.2 equiv), MeOH, 0 °C, 2 h, 65%; (f) NaOH (10 equiv), MeOH/H₂O (v/v = 1:1), 70 °C, 12 h; (g) EDCI (1.2 equiv), DMAP (0.2 equiv), CH₂Cl₂, 0 °C \rightarrow rt, 12 h, *62% over two steps*; (h) Pd(OAc)₂ (5.0 mol %), Ph₃P (10 mol %), Ag₂CO₃ (1.05 equiv), K₂CO₃ (2.0 equiv), CO (1 atm), PhMe, 90 °C, 18 h, 13% **6**, 21% **13**; (i) DIBAL-H (2.0 equiv), CH₂Cl₂, -78 °C, 12 h, 90%; (j) PPTS (0.1 equiv), MeOH, 50 °C, 7 h, 58%, 81% (brsm); (k) Pd(OAc)₂ (2.0 mol %), Ph₃P (4.0 mol %), CO (1 atm), K₂CO₃ (2.0 equiv), PhMe, 90 °C, 18 h, 91%; (l) BF₃·OEt₂ (1.2 equiv), *m*-CPBA (1.5 equiv), CH₂Cl₂, 0 °C \rightarrow rt, 5 min, 94%. SPhos = 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl, LDA = lithium diisopropylamide, EDCI = N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide, DMAP = 4-(dimethylamino)pyridine, DIBAL-H = diisobutylaluminum hydride, PPTS = pyridinium *p*-toluenesulfonate, *m*-CPBA = 3-chloroperbenzoic acid.

^{*a*}Reactions were performed on a 0.1 mmol scale, Pd(OAc)₂ (10 mol %), Ph₃P (20 mol %), K₂CO₃ (2.0 equiv), CO (1 atm), PhMe (0.07 M), 90 °C, 18 h. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR analysis. n.d = not detected.

Without a doubt, the efficient preparation of pentacyclic intermediate 6 can be attributed to the novel palladium-catalyzed cascade reaction. To the best of our knowledge, this is the first example of a palladium-catalyzed cascade reaction of this kind wherein the process terminates with aryl ring attachment.^{10a,e} To further understand the nature of this cascade reaction, a preliminary study of substrate scope was conducted under similar conditions [cat. Pd(OAc)₂, PPh₃, K₂CO₃, PhMe, 90 °C] and these results are summarized in Table 1. As predicted, substrates containing monocyclic alkenes, whether activated enones or relatively neutral allylic alcohols and their TBS derivatives (entry 1-3) all failed to afford any desired products (18a-18c). Analysis of side-products formed in these reactions resulted in the observation of tricyclic products (19-23). These experimental results supported the proposal that a palladium-catalyzed Hecktype cyclization was involved in the initial step of cascade reaction (vide infra). Subsequently, disubstituent terminal alkene

substrates 17d and 17e were synthesized and examined under standard conditions (entry 4). To our disappointment, only 17d afforded the desired cascade product 18d and in very low yield (< 5%). Interestingly, acid 24 or 25 was isolated from the reaction in both cases, which is likely generated by the hydrolysis of acylpalladium intermediate. Ether bridged bicyclic alkene substrate 17f could also give an inseparable 2:1 mixture of diastereoisomers in 84% combined yield favoring 18f (entry 5). The selectivity shown here was consistent with our previous analysis for the face-selectivity of alkene 12 (see Scheme 1). Finally, three lactone bridged bicyclic alkene substrates (17g-17i), which have differing aromatic electronic character, were prepared and investigated (entry 6-8). Much to our delight, all of these bicyclic substrates afforded the desired products (18g-18i) under standard condition. However, it was easy to find that the reaction efficiency was highly dependent on the electronegativity of aromatic ring.

Mechanistically, this pivotal cascade reaction probably takes place by an intramolecular Heck-type cyclization, followed by CO insertion and Friedel-Crafts acylation sequence. However, a potential palladacycle involved aryl sp^2 C–H bond activation pathway in the final stage of sequence couldn't be ruled out in this case (Scheme 2). Generally, there are two potential mechanisms which have received the most support in the reaction of palladium-catalyzed aryl sp^2 C–H bond functionalization: (i) concerted metalation-deprotonation (CMD) with simple, electron-deficient benzenes (path a or path b)¹² and (ii) electrophilic aromatic substitution (S_EAr) with electron-rich, nucleophilic aromatic ring (path c). Moreover, the CMD involved mechanism normally favors reaction with electron-deficient, C-H acidic benzenes, which constitutes a complete inversion of reactivity compared to the S_EAr pathway.^{12b} In the contrast, the electronwithdrawing group on the aromatic ring dramatically reduces the reactivity of the ring to further attack in S_EAr, thus resulting in a much lower reaction efficiency. Based on the above experimental observation and general reactivity displayed in palladium chemistry, it seems that the processes, involving initial Heck-type cyclization to generate σ -alkylpalladium (II) species, sequential CO insertion, and a final Friedel-Crafts acylation of acylpalladium (II) intermediate, may be operative in this palladium-catalyzed cascade reaction.

After the preliminary substrate evaluation of the palladiumcatalyzed cascade process, we turned our attention to the total synthesis of cephanolides B (**3**) and C (**4**) (Scheme 3). Toward this end, ionic reduction of ketone **6** [TfOH, Et₃SiH, CH₂Cl₂] generated lactone **26** in 70% yield. Demethylation of **26** with BBr₃ smoothly afforded cephanolide B (**3**) in nearly quantitative yield (95%). Gratifyingly, single crystals of **3**, suitable for X-ray diffraction, could be grown thus allowing for unambiguous structure determination.

Scheme 3. Completion of the syntheses of Cephanolides B and C from common pentacycle 6.^{*a*}

^{*a*}Reagents and conditions: (a) TfOH (10.0 equiv), Et₃SiH (10.0 equiv), CH₂Cl₂, rt, 40 h, 70%; (b) BBr₃ (8.0 equiv), CH₂Cl₂, -78 °C→rt, 6 h, 95%; (c) DDQ (2.0 equiv), 1:1 CH₂Cl₂/H₂O (v/v), rt, 8 h, 75%; (d) PCC (4.0 equiv), NaOAc (5.0 equiv), PhH, 70 °C, 12 h, 64%; (e) BCl₃ (5.0 equiv), TBAI (4.0 equiv), CH₂Cl₂, -78 → -40 °C, 4 h; (f) Tf₂O (1.2 equiv), pyr. (1.5 equiv), CH₂Cl₂, 0 °C, 1 h, 57% over two steps; (g) Pd(OAc)₂ (10 mol%), dppp (10 mol%), Et₃SiH (2.5 equiv), DMF, 60 °C, 8 h, 91%. DDQ = 2,3-dichloro-

1

2

3 4

5

6

7

8

9

41

42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57 58 59

60

5,6-dicyano-1,4-benzoquinone, PCC = pyridinium chlorochromate, TBAI = tetrabutylammonium iodide, pyr. = pyridine, dppp = 1,3-bis(diphenylphosphino)propane, DMF = N,N-dimethylformamide.

After completing the synthesis of cephanolide B, we then turned our attention to the more heavily oxidized member cephanolide C (4) which poses additional challenges (Scheme 3). Strategically, an ideal synthetic approach to this target would be the direct late-stage sp^3 C-H oxidation of an intermediate similar to 3, a tactic which nature may employ in the construction of this molecule.3f Considering the steric and electronic na-10 ture of the sp^3 C–H bonds in 26,¹³ we expected that a benzylic 11 oxidation would take place regioselectively to install the chal-12 lenging C-10 oxygenation. Initially, a Cu-catalyzed Kharasch-13 Sosnovsky reaction was investigated but proved to be fruitless, 14 leading only to highly complex reaction mixtures (Table 2, en-15 try 1). Taking inspiration from the general observations of Ishii and others,¹⁴ NHPI-catalyzed aerobic oxidation of 26 was ex-16 amined. Gratefully, the desired 27 could be obtained after the 17 *in-situ* reduction of the terminal peroxide with Ph₃P, but in only 18 18% yield (entry 2). Optimization of various initiators to im-19 prove the yield of 27 was unsuccessful (entry 3-5). Fortunately, 20 it was found that oxidation of 26 with DDQ in a mixture of 21 CH₃CN/H₂O at room temperature afforded the desired 27 in 22 moderated yield, along with recovery of 26 (entry 6). Encour-23 aged by this result, extensive studies were carried out and re-24 vealed that solvent had a crucial effect on the reaction efficiency 25 (entry 7 and 8). Ultimately it was discovered that stirring 26 26 with DDQ in a mixture of CH_2Cl_2/H_2O (v/v = 1:1) at room temperature afforded 27 in synthetically useful yield (75%). More-27 over, the structure and stereochemistry of 27 were unambigu-28 ously confirmed by X-ray crystallographic analysis confirming 29 the stereochemistry at C-10. Next, the C-7 benzylic position 30 could be oxidized using a chromium-based protocol [PCC, 31 NaOAc, PhH] successfully, affording ketone 28 in 64% yield.¹⁵ 32 With the proper oxygenation in place, all that remained to com-33 plete the synthesis of cephanolide C (4) was the removal of the 34 methoxy group from the benzene ring. This was accomplished 35 with cleavage of methyl ether with BCl₃,¹⁶ followed by triflation 36 with Tf₂O to give triflate 29 in 57% yield over two-steps. Finally, palladium-catalyzed reduction of 29 with Et₃SiH afforded 37 cephanolide C (4) in 91% yield.¹⁷ The spectral properties of 38 synthetic 4 were in good agreement with those of the natural 39 isolate. 40

> Table 2. Optimization of late-stage site-selective oxidation of 26 at C-10.^a

Entry	Conditions	Yield ^{<i>l</i>}
1 ^c	CuX (X = Cl, Br), PhCOOO'Bu, PhH, 50 °C, 5 h	
2	NHPI, AIBN, O ₂ , CH ₃ CN, 75 °C, 5 h; then Ph ₃ P, CH ₂ Cl ₂ , rt, 2 h	18%
3	NHPI, CH ₃ CHO, O ₂ , CH ₃ CN, 50 $^{\circ}$ C, 5 h; then Ph ₃ P, CH ₂ Cl ₂ , rt, 5 h	26%

4	NHPI, 2-ethylbutyraldehyde, O ₂ , CH ₃ CN, 50 °C, 5 h; then Ph ₃ P, CH ₂ Cl ₂ , rt, 5 h	24%
5	NHPI, trimethylacetaldehyde, O ₂ , CH ₃ CN, 50 °C, 5 h; then Ph ₃ P, CH ₂ Cl ₂ , rt, 5 h	20%
6 ^{<i>d</i>}	DDQ, CH ₃ CN/H ₂ O (1:1), rt, 10 h	30%
7^{e}	DDQ, THF/H2O (1:1), rt, 10 h	
8^{d}	DDQ, dioxane/H2O (1:1), rt, 10 h	28%
9	DDQ, CH ₂ Cl ₂ /H ₂ O (1:1), rt, 10 h	75%

^aReactions were performed on a 0.06 mmol scale. ^bIsolated yield. ^cDecomposed. ^d>85% (brsm). ^eNo reaction. NHPI = N-hydroxyphthalimide, AIBN = 2,2'-azobis(2-methylpropionitrile), DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

In summary, we have achieved the first chemical syntheses of the complex cephalotaxus diterpenoids natural products cephanolide B (3) and cephanolide C (4) in a longest linear sequence of 13 and 17 steps, respectively. The synthesis featured a novel palladium-catalyzed cascade annulation reaction, which enabled rapid construction of common pentacyclic skeleton 6 of cephalotane-type diterpenoids. In addition, a regioselective and successive late-stage sp³ C-H bond oxidation served as key element to install the challenging C-10 and C-7 oxygenation. We anticipate that the palladium-catalyzed annulation described herein may find use in the synthesis of other complex, polycyclic natural products. Moreover, Further application of this chemistry to the synthesis of other cephalotaxus diterpenoids is underway and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

X-ray crystallographic data for 3 (CIF) X-ray crystallographic data for 6 (CIF) X-ray crystallographic data for 13 (CIF) X-ray crystallographic data for 15 (CIF) X-ray crystallographic data for 27 (CIF) Experimental procedures and spectroscopic data (PDF)

AUTHOR INFORMATION

Corresponding Author

*ymzhao@snnu.edu.cn

Author Contributions

These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation of China (21202074, 21672134), Shaanxi Provincial Natural Science Foundation (2017JM2001), Fundamental Research Funds for the Central Universities (GK201803033),"100 Talents Program" of the Shaanxi Province (Y.-M. Z.), and generous start-up funds from Shaanxi Normal University. We thank Prof. Thomas J. Maimone at UC Berkelev for helpful discussions during the preparation of this manuscript. Dr. Huaming Sun at Shaanxi Normal University is acknowledged for X-ray crystallographic analysis.

REFERENCES

(1) Abdelkafi, H.; Nay, B. Nat. Prod. Rep. 2012, 29, 845.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

60

- (2) (a) Buta, J. G.; Flippen, J. L.; Lusby, W. R. J. Org. Chem. 1978, 43, 1002. (b) Sun, N. J.; Xue, Z.; Liang, X. T.; Huang, L. Acta Pharm. Sin. 1979, 14, 39.
- (3) (a) Du, J.; Chiu, M. H.; Nie, R. L. J. Nat. Prod. 1999, 62, 1664. (b) Yoon, K. D.; Jeong, D. G.; Hwang, Y. H.; Ryu, J. M.; Kim, J. J. Nat. Prod. 2007, 70, 2029. (c) Ni, G.; Zhang, H.; Fan, Y.-Y.; Liu, H. C.; Ding, J.; Yue, J. M. Org. Lett. 2016, 18, 1880. (d) Xu, J. B.; Fan, Y. Y.; Gan, L. S.; Zhou, Y. B.; Li, J.; Yue, J. M. Chem. Eur. J. 2016, 22, 14648. (e) Zhao, J. X.; Fan, Y. Y.; Xu, J. B.; Gan, L. S.; Xu, C. H.; Ding, J.; Yue, J. M. J. Nat. Prod. 2017, 80, 356. (f) Fan, Y. Y.; Xu, J. B.; Liu, H. C.; Gan, L. S.; Ding, J.; Yue, J. M. J. Nat. Prod. 2017, 80, 3159.
- (4) Evanno, L.; Jossang, A.; Nguyen-Pouplin, J.; Delaroche, D.; Herson, P.; Seuleiman, M.; Bodo, B.; Nay, B. *Planta Med.* 2008, 74, 870.
- (5) For three total syntheses of 1, see: (a) Frey, B.; Wells, A. P.; Rogers, D. H.; Mander, L. N. J. Am. Chem. Soc. 1998, 120, 1914. (b) Zhang, M.; Liu, N.; Tang, W. P. J. Am. Chem. Soc. 2013, 135, 12434. (c) Zhang, H. J.; Hu, L.; Ma, Z. Q.; Li, R. N.; Zhang, Z.; Tao, C.; Cheng, B.; Li, Y.; Wang, H. F.; Zhai, H. B. Angew. Chem., Int. Ed. 2016, 55, 11638.
- (6) For syntheses of related structures of 1, see: (a) Zhang, L. Y.; Chen, S. Z.; Wei, D.; Huang, L.; Chai, J. J.; He, C. H. Chin. Chem. Lett. 1996, 7, 892. (b) Rogers, D. H.; Morris, J. C.; Roden, F. S.; Frey, B.; King, G. R.; Russkamp, F. W.; Bell, R. A.; Mander, L. N. Pure Appl. Chem. 1996, 68, 515. (c) Zhang, L. Y.; Yang, W. Q.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 1997, 8, 15. (d) Yang, W. Q.; Zhang, L. Y.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 1997, 8, 203. (e) Yang, W. Q.; Yu, X. M.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 1997, 8, 1043. (f) Yang, Z. Q.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 1998, 9, 261. (g) Zhang, H. B.; Appels, D. C.; Hockless, D. C. R.; Mander, L. N. Tetrahedron Lett. 1998, 39, 6577. (h) Yu, X. M.; Zhang, L. Y.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 1999, 10, 657. (i) Rogers, D. H.; Frey, B.; Roden, F. S.; Russkamp, F. W.; Willis, A. C.; Mander, L. N. Aust. J. Chem. 1999, 52, 1093. (j) Yu, X. M.; Chen, S. Z.; Huang, L. Chin. Chem. Lett. 2000, 11, 295. (k) Frey, B.; Wells, A. P.; Roden, F.; Au, T. D.; Hockless, D. C.; Willis, A. C.; Mander, L. N. Aust. J. Chem. 2000, 53, 819. (1) Li, Y. W.; Huang, L. Chin. Chem. Lett. 2002, 13, 937. (m) Mander, L. N.; O'Sullivan, T. P. Synlett 2003, 1367. (n) Li, Y. W.; Zhu, L. Y.; Huang, L. Chin. Chem. Lett. 2004, 15, 397. (o) O'Sullivan, T. P.; Zhang, H. B.; Mander, L. N. Org. Biomol. Chem. 2007, 5, 2627. (p) Abdelkafi, H.; Evanno, L.; Herson, P.; Nay, B. Tetrahedron Lett. 2011, 52, 3447. (q) Abdelkafi, H.; Evanno, L.; Deville, A.; Dubost, L.; Chiaroni, A.; Nay, B. Eur. J. Org. Chem. 2011, 2789. (r) Abdelkafi, H.; Herson, P.; Nay, B. Org. Lett. 2012, 14, 1270. (s) Ma, Z. Q.; Cheng, B.; Zhai, H. B. Asian J. Org. Chem. 2014, 3, 1097.
- (7) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040.
- (8) For reviews on Mizoroki–Heck reaction, see: (a) Shibasaki, M.; Boden, C. D. J.; Kojima, A. *Tetrahedron* 1997, *53*, 7371.
 (b) Beletskaya, I. P.; Cheprakov, A. V. *Chem. Rev.* 2000,

100, 3009. (c) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.

- (9) For some remarkable recent examples of palladium-catalyzed cascade reactions, see: (a) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 7460. (b) Lu, Z.; Hu, C.; Guo, J.; Li, J.; Cui, Y.; Jia, Y. Org. Lett. 2010, 12, 480. (c) Yoon, H.; Lossouarn, A.; Landau, F.; Lautens, M. Org. Lett. 2016, 18, 6324. (d) P érez-G ómez, M.; Garc á-López, J.-A. Angew. Chem., Int. Ed. 2016, 55, 14389. (e) Yoon, H.; Rölz, M.; Landau, F.; Lautens, M. Angew. Chem., Int. Ed. 2017, 56, 10920. (f) Yao, T.; He, D. Org. Lett. 2017, 19, 842. (g) P érez-Gómez, M.; Hern ández-Ponte, S.; Bautista, D.; Garc á-López, J.-A. Chem. Commun. 2017, 53, 2842. (h) Saha, N.; Wang, H.; Zhang, S.; Du, Y.; Zhu, D.; Hu, Y.; Huang, P.; Wen, S. Org. Lett. 2018, 20, 712.
- (10) For examples of carbonylative annulation reactions, see: (a) Grigg, R.; Khalil, H.; Levett, P.; Virica, J.; Sridharan, V. *Tetrahedron Lett.* **1994**, *35*, 3197. (b) Negishi, E.; Cop éret, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. *J. Am. Chem. Soc.* **1996**, *118*, 5904. (c) Campo, M.; Larock, R. C. *Org. Lett.* **2000**, *2*, 3675. (d) Campo, M. A.; Larock, R. C. *J. Org. Chem.* **2002**, *67*, 5616. (e) Furusawa, T.; Tanimoto, H.; Nishiyama, Y.; Morimoto, T.; Kakiuchi, K. *Adv. Synth. Catal.* **2017**, *359*, 240. (f) Wen, J.; Tang, S.; Zhang, F.; Shi, R.; Lei, A. *Org. Lett.* **2017**, *19*, 94.
- (11) Grieco, P. A.; Oguri, T.; Yokoyama, Y. *Tetrahedron Lett.* **1978**, *5*, 419.
- (12) (a) García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A.M. J. Am. Chem. Soc. 2006, 128, 1066. (b) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.
- (13) For a review on selective C–H bond oxidation, see: Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.
- (14) For reviews on NHPI-catalyzed oxidation, see: (a) Ishii, Y.;
 Sakaguchi, S.; Iwahama, T. Adv. Synth. Catal. 2001, 343, 393. (b) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
- (15) For selected recent examples of sp³ C-H bond oxygenation in natural product total synthesis, see: (a) McCallum, M. E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. **2016**, 138, 2437. (b) Yuan, C.; Jin, Y.; Wilde, N. C.; Baran, P. S. Angew. Chem., Int. Ed. **2016**, 55, 8280. (c) Chu, H.; Smith, J. M.; Felding, J.; Baran, P. S. ACS Cent. Sci. **2017**, 3, 47. (d) Hung, K.; Condakes, M. L.; Morikawa, T.; Maimone, T. J. J. Am. Chem. Soc. **2016**, 138, 16616. (e) Condakes, M. L.; Hung, K.; Harwood, S. J.; Maimone, T. J. J. Am. Chem. Soc. **2017**, 139, 17783. (f) Ye, Q.; Qu, P.; Snyder, S. A. J. Am. Chem. Soc. **2017**, 139, 18428.
- (16) Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.;
 Woodworth, G. F.; Morgan, B. P.; Coe, J. W. J. Org. Chem. 1999, 64, 9719.
- (17) Kotsuki, H.; Datta, P. K.; Hayakawa, H.; Suenaga, H. Synthesis **1995**, 1348.

59

60

