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SUmmry : 4-Lithio-2-(t-butyldimethylsilyl)-3-(hydroxymethyl)furan , generated 

by treating 2-(t-butyldimethylsilyl)-3-(hydroxymethyl)furan 2 with 2.2 eguiva- 

lents of n-butyllithium (DME/O°C/15 min), is trapped by a variety of electro- 

philes to produce, after desilylation, 3,4-disubstituted furans in good to 

moderate yields. 

The propensity of furan to both lithiate and add electrophiles at the C-2 

or C-5 position has led chemists to develop elaborate methods for preparing 

3,4-disubstituted furans. Some of these include Diels-Alder--Retro-DielsAlder 

chemistryl, chemical modifications of 3,4-bis(acetoxymethyl)furan2 or 

3,4-furandicarboxylic acid3 and the preparation of 3-iodo-4-methylfuran from 

2-butyne-1,4-dio14. We herein report a more versatile synthesis of 3,4-disub- 

stituted furans in which both the C-3 and C-4 substituents can be modified for 

later synthetic applications. 

The lithiation of 2,3_disubstituted furans has been reported to produce 

the C-5 lithio species exclusively5 due to the increased acidity of the 

a-protons over the B-protons on heteroaromatic compounds6. We envisioned, 

however, that if the group at C-2 was sterically cumbersome and the substituent 

at C-3 was an ortho-lithiation director, that lithiation might occur at C-4 due 

to preferential base co-ordination to the C-3 group rather than with the 

sterically blocked furan ring oxygen. To satisfy these requirements we chose 

the t-butyldimethylsilyl group as the bulky C-2 substituent and a hydroxymethyl 

group (at C-3) as the lithiation director7 (compound 2, Scheme 1). 
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Lithiation of 3-[(t-butyldimethylsilyl)oqmethyl]furan 1 (n-BuLi/HMPA/ 

-2OOC/DME) provided the prerequisite material, 2-(t-butyldimethylsilyl)-3- 

(hydroqmethyl)furan 2, via a 1,4 0-X silyl migration8(Scheme 1). Treatment 

of 2 with 2.2 equivalents of n-butyllithium (WA/DME/-20°C/lh) and quenching 

the resulting anion with MeOD produced the 4-deuterio species 1 (>95% by 

1HNMR). That the deuterium had indeed added at C-4 was confirmed by 1HNMR; of 

the two fur-an ring protons in the lH NMR spectrum of compound 2 ( 67.57 (H-5) 

and &6.45(H-4)), the upfield signal had disappeared in the 1H NMR spectrum of 

19. 

Optimized results were obtained by treating 2 with 2.2 equivalents of 

n-butyllithium in DME (without HMPA) at O°C for 15 minutes; quenching the 

resulting anion with a variety of electrophiles in the presence of LiCl (15 

eguivalents)1° produced 2,3,4_trisubstituted furans in moderate to good yields 

(Table 1). The products of these additions were desilylated ((n-Bu)4NF/THF) to 

afford 3,4_disubstituted furans in excellent yields. In the case of entries 6 

and 7, competing reactions with the hydroxymethyl group occured, therefore, 

excess electrophile was added to produce the C- and 0-alkylated products 8 and 

9 _* The resulting carbonate and urethane were cleaved prior to desilylationl'. 

Table 1: Pretxration of 3,4-Disubstituted FIxaxis 

OH 

Electroohiles Product(% Yield1 Productf% Yield1 

1. DoCH3 3 Rl=D, R2=H (95) lo (92) 

2. I2 3 Rl=I, R2=H (92) II. (91) 

3. ICH3 5 Rl=CH3, R2=H (82) 12 (90) 

4. (CH3)3SiCl 5 Rl=Si(CH3)3, R2=H (78) -- -- 

5. Cl(CH2)3I 1 Rl=(CH2)3Cl, R2=H (66)a 13 (94) 

6. ClCooCH3 3 Rl=R2=COOCH3 (57) 14 (91) 

7. ClCON(CH2CH3)2 9 Rl=R2=CON(CH2CH3)2 (75) 15 (90) 

a) yield based on recovered starting material 

A general experimental procedure follows. A solution of 2 (0.25 g, I.2 

mmol) in DME (5 mL) was cooled to -78OC under argon and treated with n-butyl- 

lithium (1.04 mL of 2.5 M in hexane, 2.6 mmol). The solution was stirred at 

O°C for 15 minutes and then treated with anhydrous lithium chloride (0.5Og, 12 

mmol) followed immediately by iodomethane (0.37 mL, 6.0 mmol). The solution 

was stirred at O°C for 24 hours and then treated with saturated aqueous 

ammonium chloride. An ethyl acetate extraction, silica gel column and a 

distillation afforded 5 (82%). 

Compound 5 (1 eq.) was then stirred with tetra-n-butylanunonium fluoride (2 

eg.) in anhydrous THF for 12 hours under argon. Normal workup afforded 
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3-(hydroxymethyl)-4-methylfuran 12 (90%) after purification12. 

The reaction was not limited to the C-2 substituted t-butyldimethylsilyl 

furan 2 and was found to proceed favourably with other C-2 silyl substituted 

furans (Table 2). Replacement of the silane by a significantly smaller methyl 

group resulted in a 2:l ratio of C-4:C-5 anions (entry 7, Table 2)13. These 

results tend to indicate that the steric bulk of the silane moiety is effec- 

tively blocking base co-ordination to the furan ring oxygen, thus allowing 

co-ordination of the base to the hydroxymethyl group at C-3 which ultimately 

results in C-4 deprotonation. However, Table 3 and entry 6 of Table 2 indicate 

that factors other than just steric bulk are involved as a change of solvent, 

additives and/or temperature can vary the C-4:C-5 anion ratio. Interestingly, 

the bidentate solvent DME does not require HMPA to produce a favourable anion 

ratio, thus, solvent coordination to the base and/or the dianion of 2 must be 

one of the contributing factors. 

Table 2: The Effect of C-2 Substituents on C-4:C-5 Anion Ratio& 

d lo' :F!R R I 2 3 

Compound Temoerature(*Q. C-4:C-5 Anion Rati& 

1. X=Si, Rl=R2=R3=Me -20 or 0 100 : 0 

2. X=Si, Rl=R2=Me, R3=i-Pr -20 or 0 100 : 0 

3. X=Si, Rl=R2=Me, R3=t-Bu -20 or 0 100 : 0 

4. X=Si, Rl=R2=Ph, Rg=t-Bu -20 or 0 100 : 0 

5. X=Si, Rl=R2=R3=i-Pr -20 100 : 0 

6. X=Si, Rl=R2=R3=i-Pr 0 75 : 25 

7. x=c, Rl=R2=R3=H -20 or 0 64 : 36 

a) all reactions were performed in DME for 1 hour using 2.2 equivalents of 

n-butyllithium as the base followed by a MeOD quench of the anion. 

b) ratio determined by integration of the lH NMR spectrum. 

c) ratio was adjusted for the %H content of the MeOD as determined by M.S.. 

Table 3: Solvent Effects on the C-4:C-5 Anion Ratio of Furan 23 

Solvent Svstem c-4 : C-5 Anion Rati& 

1. Hexane 70 : 30 

2. Hexane / HMPA 66 : 34 

3. Et20 68 : 32 

4. Et20 / HMPA 100 : 0 
5. THF 75 : 25 

6. THF/HMPA 100 : 0 

7. DME and DME / HMPA 100 : 0 

a) all reactions were performed at -2OOC for 1 hour using n-butyllithium as the 

base followed by a MeOD quench. b) determined by lH NMR integration. 

c) ratio was adjusted for the %H content of the MeOD as determined by M.S.. 
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Thus we have developed a short and efficient synthesis of 3,4-disubsti- 

tuted furans from readily available 3-[(t-butyldimethylsilyl)oxymethyl]furan 

1 -a Work is continuing to expand the scope of these lithiations and applica- 

tions of this methodology to the synthesis of furan-containing natural products 

is in progress. 
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The 5-deuterio-2-(t-butyldimethylsilyl)-3-(hydroxymethyl)furan 16 was 

prepared as follows: 

OH 
I) clSi:+ ,DYAP 

Zln-SuLi, HMPA, DM 

E 

The downfield furan proton of compound 2 (6 7.57) was absent in the 'H NMR 

spectrum of 16. 

Yields were substantially increased in the presence of lithium chloride, 

see: Carpenter, A.J.; Chadwick, D.J. Tetrahedron Lett., 1985, 26, 5335. 

The carbonate 8 was removed by K2C03/MeOH/lh/r.t. and the urethane 9 was 

removed by NaOMe/MeOH/60°C/12h. 

Compound 12: b.p. 91-93OC/20 mm; lH NMR (300 MHz, CDcl,) 62.02 (s, 3H), 

3.21 (bs, lH), 4.49 (s, 2H), 7.15(s, lH), 7.32 (s, 1H); 13c NMR (75 MHZ, 

CDCl3) 67.8, 55.5, 119.5, 125.3, 140.2, 140.6; M.S. 112. 

2-Methyl-3-furancarboxylic acid was prepared according to reference 2a and 

then reduced with lithium aluminum hydride in ether to provide 3-(hydroxy- 

methyl)-2-methylfuran in 93% yield. 
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