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Diastereo- and Enantioselective 1,4-Difunctionalization of 
Borylenynes by Catalytic Conjunctive Cross-Coupling 
Chunyin Law, Elton Kativhu, Johnny Wang and James P. Morken*[a] 

 

Abstract:  Enantioselective conjunctive cross-coupling of enyne-
derived boronate complexes occurs with 1,4 addition of the 
electrophile and migrating group across the p system.  This reaction 
pathway furnishes a-boryl allenes as the reaction product.  In the 
presence of a chiral catalyst, both the central and axial chirality of the 
product can be controlled during product formation. 

Allenes are important structural motifs that are found in a 
number of natural products 1  and often find use as synthetic 
intermediates.2  Accordingly, a substantial body of work has been 
dedicated to the enantioselective synthesis of axially chiral 
allenes.3,4  Because of their ability to undergo cyclization to afford 
biologically-relevant oxygenated heterocycles 5 , particular 
attention has been paid to the synthesis of chiral substituted a-
allenols.  These compounds have been prepared by the 
stereospecific SN2’ reaction between organocuprates and 
propargylic alcohols, and by the transition-metal catalyzed 
coupling of propargylic epoxides and organic nucleophiles.  In 
both cases, the axial chirality of the allenes arises by transfer of 
axial chirality from the starting materials to the products.6  More 
recently, Ma reported an elegant copper-catalyzed synthesis of a-
allenols by coupling aldehydes and terminal alkynes wherein the 
axial chirality is controlled by the ligand on the copper complex.7  
Despite these advances in the catalytic synthesis of a-allenols, 
there is still a lack of catalytic methods that allow for a-allenol 
construction with catalyst-based control of both axial and central 
chirality. Indeed, to the best of our knowledge, the Mukaiyama-
type aldol reaction reported by List is the only method where a 
catalyst controls both axial and central chirality of a-allenols 
during the formation of the product. 8   Herein, we report the 
application of catalytic conjunctive cross-coupling to the synthesis 
of a-allenyl boronates, which are direct precursors not only to a-
allenols, but also an array of other compounds.  Of note, the 
processes reported herein occur catalytically, and in a highly 
enantioselective and diastereoselective fashion.   

The reaction design we undertook involves a conjunctive cross-
coupling 9  reaction of an enyne-derived boronate complex (A, 
Scheme 1) with an electrophile under the influence of a Pd 
catalyst to give allene-containing boronic ester B.  It was expected 

that activation of A might occur by alkyne activation (C, inset 
Scheme 1), such that 1,2 boronate rearrangement would form the 
allenyl palladium intermediate (D).  Upon reductive elimination, 
this sequence would generate allenyl boronic ester B.   In 
practice, selective reaction by this pathway was found to face 
several challenges:  first, unlike activation of simple alkenyl 
boronates where the chiral Pd complex directly binds to a 
prochiral alkene substrate, the Pd complex in C is further removed 
from the incipient stereogenic center such that effective 
stereoinduction is more challenging.  Second, while activation of 
ate complex is proposed to occur by alkyne activation (C→D), 
activation of the substrate might also occur through alkene 
association (E→F) and this can lower the chemoselectivity of the 
process.  Moreover, competitive if interconversion between D and 
F is faster than reductive elimination, then competitive activation 
of the alkene may also lower the stereoselectivity.   

To initiate our investigation of the conjunctive coupling with 
enynyl boronates, trans-borylenyne 1 was subjected to 
conjunctive coupling with 3 mol% Pd(OAc)2, 3.6 mol% 
MandyPhos ligand L1, and phenyl triflate.  As shown in Scheme 
2, this process indeed delivered the allene-containing product 2 
in acceptable levels of enantioselectivity and yield; however, the 
reaction diastereoselectivity was poor (Scheme 2).  A survey of 
phosphine ligands and reaction conditions (see SI) did not 
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Scheme 1. Issues pertaining to the control of both axial and central 
chirality in catalytic construction of chiral allenes. 
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improve the outcome.  It was reasoned that the two diastereomers 
in this reaction would originate from competing syn- and anti-
periplanar migrations (I and II, Scheme 2) and with trans enyne-
derived boronate, the Pd complex may be situated too far from 
the incipient stereogenic center to control the topological course 
of the 1,2 shift.  To address this issue, we considered reaction of 
cis enyne-derived boronates.  As depicted in III and IV (Scheme 
2), this alternate olefin configuration would bring the four-
coordinate boron center in closer proximity to the alkyne-bound 
palladium catalyst, such that anti-periplanar migration (I) would be 
favored in order to avoid steric repulsions between the migrating 
group and Pd catalyst. 

 

 

Scheme 2. Preliminary observation in conjunctive coupling with 
enyne-derived boronate 1 and an analysis of the impact of alkene 
stereochemistry on the reaction. 

 
In practice, the use of cis-enyne-derived boronates10 led to 

significantly enhanced diastereoselectivity, while retaining high 
enantioselectivity and product yield in the conjunctive cross-
coupling reaction.  As depicted in Table 1, a number of 
electrophiles and migrating groups were examined with the cis-
enyne substrate, and yields and selectivities are generally good.  
Of note, aryl bromides could be used as the electrophile and 
provide comparable yield and selectivity to the aryl triflates.  The 
reaction operates with both electron-rich (3) and electron-poor (6) 
arene electrophiles, providing the corresponding a-allenols upon 
oxidative workup. An alkenyl electrophile also reacted with 
reasonable selectivity to furnish the enallene product (8).  Also of 
note, heterocycles such as furan and indole derivatives can be 
employed as the electrophile (9, 10) or migrating group (14, 15) 
and alkyne substituents other than a pentyl group can be 
employed (16, 17).  

The conditions employed for aryl migration in Table 1 proved to 
be ineffective for alkyl migration, providing products with inferior 
enantio- and diastereoselectivity. In an attempt to improve the 
outcome for this important class of products, we examined other 
achiral boron ligands that might alter catalyst–substrate steric 
interactions. As depicted in Table 2, whereas the pinacol-derived 
boronate provided the product in 3:1 dr and in a near-racemic 
fashion (18), the larger "mac"-derived substrate provided the 
product (19) in enhanced enantioselectivity.  Probing this 
alternate ligand framework, it was found that the secondary 
alcohol derived ligand, "hac", provided the product (20) in both 
high enantio- and diastereoselectivity.  With the "hac" ligand, the 
modest yield of 20 was due to competitive direct transmetallation, 
providing Suzuki-Miyaura coupling products. Inspired by a 
previous report9g, it was found that the direct transmetallation 
could be minimized by adding steric encumbrance near the 
boronate oxygen ligands that might prevent O–Pd interaction11 
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Table 1. Conjunctive coupling of aryl enynyl boronate complexesa 

 
(a) Yields are isolated yield of product and reflect an averaged outcome of two 
experiments.  Diastereoselectivity (dr) determined by 1H NMR analysis of the 
unpurified reaction product and 13C NMR analysis of purified compounds; 
enantioselectivity (er) determined by chiral SFC analysis.  
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required for transmetallation.  Thus, the 3,7-dimethyl substituted 
"hac*" ligand provided the desired product 21 in acceptable yield 
and both high enantio- and diastereoselectivity.   

Table 2. Influence of the boron ligand on conjunctive coupling with 
aliphatic migrating groups a 

 
(a) Yields are isolated yield of product and reflect an averaged outcome of two 
experiments.  Diastereoselectivity (dr) determined by 1H NMR analysis of the 
unpurified reaction product and 13C NMR analysis of purified compounds;  
enantioselectivity (er) determined by chiral SFC analysis.  

With an effective strategy for alkyl migration in conjunctive 
coupling with enyne-derived boronates, other substrates were 
examined in this reaction (Table 3).  Because of the limited 
availability of functionalized alkyllithium reagents and their 
impractical synthesis on a laboratory scale, conditions were 
developed for use of more easily accessible alkyl Grignard 
reagents in the conjunctive coupling reaction.  While a detailed 
optimization is described in the Supporting Information, critical 
features are the use of 14 equivalents of DMSO to stabilize the 
boronate complex, along with the use of CsF to improve reactivity 

in the coupling reaction, along with sodium or potassium triflate to 
sequester the halide which is an inhibitor of couplings.9b  With 
these conditions, it was found that simple aliphatic groups can 
migrate in the coupling reaction (22, 23) and that the reaction can 
easily process side chains containing alkene (24), silyl ether (26), 
acetal (27), and alkyne (28) functional groups as well as a 
secondary migrating carbon atom (25), although a tert-butyl group 
failed to migrate under these conditions.   

 
As alluded to in the introduction, activation of the enyne-derived 

boronate might occur through either alkene or alkyne activation, 
with interconversion of vinyl and propargyl palladium complexes 
providing a route for both activation modes to deliver the allene 
product.  Insight into the dynamic features of this process was 
gained through the reaction of a more hindered boronate. As 
depicted in Scheme 3, when cyclohexyl-substituted boronate 29 
was subjected to the reaction conditions, alkyne product 31 was 
produced in addition to expected allene 30.  Of note, the 
enantioselectivity of compounds 30 and 31 is significantly 
different.  Because the p-s-p isomerization that would interconvert 
alkenyl palladium complex V and propargyl palladium VI is known 
to be stereospecific12, the divergent stereoselectivity observed in 
30 and 31 suggests that these products are unlikely to arise from 
a rapidly interconverting common intermediate, but rather are 
formed by distinct reaction pathways, mostly likely involving 
alkyne versus alkene activation as depicted in Scheme 3. 

 

 

Scheme 3. Origin of chemoselectivity in conjunctive coupling of 
enyne-derived boronates. 

To assess the utility of the obtained a-allenols in oxygenated 
heterocycle synthesis, we first examined a AuCl3-catalyzed 
cyclization 13  reaction to afford 2,5-dihydrofuran compound 32 
(Scheme 4). This reaction was found to occur with excellent 
preservation of the stereochemical integrity of the stereogenic 
center in the starting material and established a second 
stereogenic center with a high level of selectivity (>20:1 dr).  In a 
second reaction, it was found that the allenol substrate could 
undergo stereoselective epoxidation followed by intramolecular 
epoxide opening to afford tetrahydrofuranone 33.14  In both cases, 
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Table 3. Conjunctive coupling of enynyl boronates derived from 
aliphatic Grignard reagentsa 

 
(a) Yields are isolated yield of product and reflect an averaged outcome of two 
experiments.  Diastereoselectivity (dr) determined by 1H NMR analysis of the 
unpurified reaction product and 13C NMR analysis of purified compounds.  
Enantioselectivity (er) determined by chiral SFC analysis. NaOTf used for 
RMgCl, KOTf added for RMgBr.  
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the reactions proceeded with transfer of axial chirality to central 
chirality, forming a new quaternary stereogenic center with 
stereocontrol.  

 

Scheme 4. Construction of tetrahydrofuran derivatives from a-
allenols. 

In conclusion, we have reported a catalytic conjunctive coupling 
reaction that allows for the enantio- and diastereoselective 
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