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Synthesis of b- and c-carbolines via ruthenium and rhodium catalysed

[2+2+2] cycloadditions of yne-ynamides with methylcyanoformatew
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A flexible approach towards substituted b- and c-carbolines
based on transition metal catalysed [2+2+2] cycloaddition

reactions between functionalised yne-ynamides and methylcyano-

formate is described. The versatility of this new reaction

sequence is demonstrated by its application in the total synthesis

of the marine natural product eudistomin U.

Pyrido[3,4-b]indoles, commonly known as b-carbolines, are

the key structural motif of a variety of biologically important

alkaloids of natural and synthetic origin.1 Natural products

containing a b-carboline unit have been isolated from

terrestrial plants and various marine invertebrates and their

biological properties range from interactions with the benzo-

diazepine receptor to potent antitumor, antiviral and anti-

microbial activities.2 The occurrence of the pyrido[4,3-b]indole

or g-carboline motif in natural products is less well documented.3

However, a number of reports have shown that g-carbolines
possess significant antitumor properties based on their structural

similarity to the natural products ellipticine and olivacine.4

Due to their biological importance synthetic methodologies

for the b- and the g-carboline framework received considerable

attention. The Pictet–Spengler reaction followed by a

dehydrogenation reaction is the most widely studied method

to access b-carbolines.5 More recently, palladium catalysed

cross-coupling and iminoannulation reactions,6 as well as

gold(III)-catalysed cycloisomerisation sequences were reported

for the construction of b- and g-carbolines.7

We disclose here an expedient method for the synthesis of

b- and g-carbolines that is based on an A - ABC ring

formation strategy by transition metal catalysed [2+2+2]

cycloaddition reactions of functionalised yne-ynamides with

nitriles (Scheme 1).8,9

Such a straightforward assembly via a consecutive formation

of three bonds in a single reaction step should allow diversity as

well as target oriented syntheses of either b- or g-carbolines.
Furthermore, this approach should be relevant for applications

in natural product syntheses when methylcyanoformate

(R3 = CO2Me in Scheme 1) is used as the nitrile component.

The synthesis of a set of substituted diyne precursors needed

for this study started with the readily available yne-ynamide 1

that was obtained through our previously reported method of

the direct N-ethynylation of tosylanilides with ethynyl-

iodonium triflate (Scheme 2).8b,10 Methylation of the ynamide

unit in 1 provided compound 2 (97% yield) and a subsequent

desilylation with tetrabutylammonium fluoride (TBAF)

afforded yne-ynamide 3 (90% yield). Thereafter, the bismethylated

diyne 4 (92% yield) became available through a second

methylation sequence starting from 3.

A simple and flexible way to further functionalise

yne-ynamide 1 was found in the Negishi reaction.11 Palladium

catalysed cross-couplings of 1 with various iodobenzenes and

iodopyridines provided the yne-ynamides 5a–d already at

room temperature and their subsequent desilylation with

TBAF afforded the desired yne-ynamides 6a–d in a short

overall synthetic sequence (Scheme 2).

Scheme 1 The A - ABC ring formation strategy to b- and/or

g-carbolines.

Scheme 2 Reagents and conditions: (a) LiHMDS, THF, MeI, �40 1C

to rt, 12 h (97% yield for 2); (b) TBAF, THF, 0 1C, 15 min (90% yield

for 3); (c) LiHMDS, THF, MeI, �40 1C to rt, 12 h (92% yield for 4);

(d) LiHMDS, ZnBr2, Pd2dba3 (5 mol%), PPh3 (20 mol%), THF, rt,

12 h; (e) TBAF, THF, 0 1C.

aUniversity of Mainz, Mainz, Germany
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Next, [2+2+2] cycloaddition reactions of yne-ynamides

with methylcyanoformate were investigated.12,13 Catalysts

for the co-cyclisation of tethered diynes with electron deficient

nitriles to provide annelated pyridines were reported by Itoh

and Tanaka utilising the Cp*RuCl(cod) complex or cationic

rhodium complexes, respectively.14,15 Therefore, co-cyclisations

of yne-ynamides with methylcyanoformate as the electron

deficient nitrile component were carried out with either

Cp*RuCl(cod) at 35 1C (method A, Table 1) and 120 1C

(method B, Table 1), or with a cationic rhodium catalyst

generated from 3 mol% [Rh(cod)2]BF4 and 3 mol% BINAP

at room temperature (method C, Table 1).

Gratifyingly, the [2+2+2] cycloaddition of yne-ynamides

with an excess of methylcyanoformate led to the successful

synthesis of either b- or g-carbolines as the major products with

the following details: compounds 3, 6a, and 6b provided the

b-carbolines 7, 8a, and 8b, respectively, as single regioisomers

when Cp*RuCl(cod) was used as a catalyst and b-carbolines
were obtained as the major regioisomers, when the cationic

rhodium catalyst generated by method C was applied (Table 1,

entries 1–5). The 2-pyridyl substituted yne-ynamide 6c and

methylcyanoformate underwent a co-cyclisation neither in the

presence of the Cp*RuCl(cod), nor in the presence of the

cationic rhodium complex following method C. Presumably

the bipyridyl moiety in product 8c inhibits the catalytic cycle by

complexation to the Rh- or Ru-based catalyst. In strong

contrast, the b-carboline 8d was obtained in 70% yield

as a single regioisomer when Cp*RuCl(cod) mediated the

co-cyclisation of the 3-pyridyl substituted yne-ynamide 6d with

methylcyanoformate (Table 1, entry 8), whereas the cationic

rhodium catalyst was again unproductive (entry 9).

Mixtures of regioisomeric b- and g-carbolines were obtained
when symmetrically substituted yne-ynamides were subjected

to the [2+2+2] cycloaddition reaction (Table 1, entries 10–13).

These results strongly indicate that the regioselective outcome

of the co-cyclisation is directed by the substitution pattern on

the starting yne-ynamide. Indeed, with the cycloaddition

precursors 12, 14, and 16 both catalysts now provided

g-carbolines. The Cp*RuCl(cod) complex afforded the

g-carbolines 13, 15, and 17 as a single isomer in 46%, 52%

and 67% yield respectively (Table 1, entries 14, 16, and 17).

Here, the cationic Rh-catalysts gave the corresponding

g-carbolines as the major products, and with a steric increase

of the substituent on the alkyne moiety the ratio of regio-

isomers was significantly raised (Table 1, entries 15 and 18).

These results are in agreement with other studies concerning

the regioselective outcome of [2+2+2] cycloadditions of

tethered diynes with nitriles.16 In all examples studied within

the carboline series reported here, the Cp*RuCl(cod) catalyst

was less reactive but more selective than the cationic rhodium-

based catalyst generated from [Rh(cod)2]BF4 and BINAP.

With the aim to underline the applicability of this new atom-

and step economic approach towards either b- or g-carbolines,
the total synthesis of the b-carboline eudistomin U (22) was

targeted (Scheme 3). Eudistomin U was isolated from the

Caribbean ascidian Lissoclinum fragile and showed DNA

binding and antimicrobial properties.17,18

Our synthesis commenced with commercially available

2-iodoaniline (18) that was transformed into the yne-ynamide

1 via three steps including a Sonogashira coupling with

trimethylsilyl acetylene and the N-ethynylation of the tosyl-

amide moiety with ethynyliodonium triflate (Scheme 3). The

Negishi reaction of 1 with 3-iodo-N-tosylindole was followed

Table 1 Synthesis of b-carbolines and g-carbolines

Entry Yne-ynamide Method Product
Ratio
b : g

Yield
(%)

1 3 A 7 100 : 0 92
2 3 C 7 75 : 25 84

3 6a R = H A 8a R = H 100 : 0 61
4 6a R = H C 8a R = H 92 : 8 95
5 6b R = OMe A 8b R = OMe 100 : 0 60

6 6c A 8c — 0
7 6c C 8c — 0

8 6d A 8d 100 : 0 70
9 6d C 8d — 0

10 9 R1 = R2 = H A 10 R1 = R2 = H 30 : 70 70
11 9 R1 = R2 = H C 10 R1 = R2 = H 40 : 60 40
12 4 R1 = R2 = CH3 B 11 R1 = R2 = CH3 50 : 50 87
13 4 R1 = R2 = CH3 C 11 R1 = R2 = CH3 60 : 40 84

14 12 R1 = CH3 B 13 R1 = CH3 0 : 100 46
15 12 R1 = CH3 C 13 R1 = CH3 40 : 60 83
16 14 R1 = C5H11 B 15 R1 = C5H11 0 : 100 52
17 16 R1=C6H5 B 17 R1=C6H5 0 : 100 67
18 16 R1=C6H5 C 17 R1=C6H5 7 : 93 65
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by a desilylation with TBAF to provide the yne-ynamide 19

(78% yield over two steps). The Cp*RuCl(cod) catalysed

[2+2+2] cycloaddition of 19 with methylcyanoformate

(7 equiv.) gave rise to the b-carboline ester 20 (94% yield)

that was thereafter saponificated with simultaneous removal

of the N-carboline and N-indolyl tosyl groups to provide the

b-carboline carboxylic acid 21 (96% yield). Finally, decarboxy-

lation of 21 with the help of copper powder under microwave

irradiation afforded eudistomin U (22, 88% yield) whose

spectroscopic data were identical to that of natural material.17

In conclusion an expedient method for the synthesis of

either b- or g-carbolines based on ruthenium or rhodium-

catalysed [2+2+2] cycloaddition reactions was developed.

This new method for the construction of the b-carboline
framework was applied in the total synthesis of the marine

natural product eudistomin U that was achieved within 8 steps

and with 49% overall yield starting from commercially

available 2-iodoaniline.
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Scheme 3 Application of this new b-carboline synthesis in the total synthesis of eudistomin U (22).
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