Bioorganic & Medicinal Chemistry Letters 22 (2012) 2415-2417

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Biogrant & Medical Commercy Letters In Control of the American International International

journal homepage: www.elsevier.com/locate/bmcl

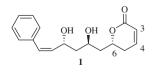
The first stereoselective total synthesis of (Z)-cryptomoscatone D2, a natural G_2 checkpoint inhibitor $\stackrel{\scriptscriptstyle \, \ensuremath{\sim}}{}$

Gandolla Chinna Reddy^a, Penagaluri Balasubramanyam^a, N. Salvanna^a, Thummala Sreenivasulu Reddy^b, Biswanath Das^{a,*}

^a Organic Chemistry Division-I, Indian Institute of Chemical Technology (CSIR), Hyderabad 500 007, India ^b Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515 003, India

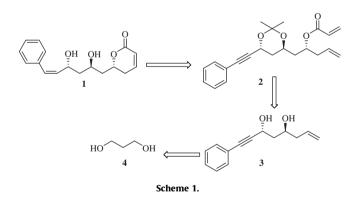
ARTICLE INFO

Article history: Received 29 December 2011 Revised 8 February 2012 Accepted 9 February 2012 Available online 17 February 2012


Keywords: (Z)-cryptomoscatone D2 Stereoselective synthesis Maruoka allylation Ring closing metathesis Lindlar's catalyst

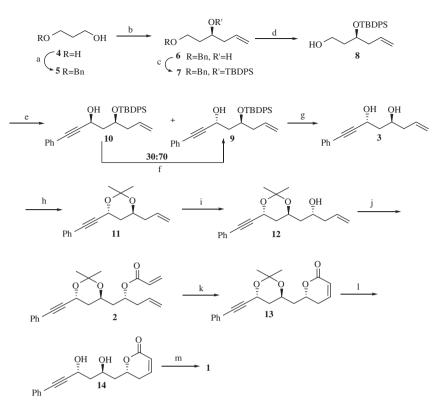
ABSTRACT

The first stereoselective synthesis of (*Z*)-cryptomoscatone D2, a naturally occurring G_2 checkpoint inhibitor, was accomplished using propane-1,3-diol as the starting material. The Maruoka asymmetric allylation, ring closing metathesis and the hydrogenation of the triple bond employing Lindlar's catalyst were involved as the key steps.


© 2012 Elsevier Ltd. All rights reserved.

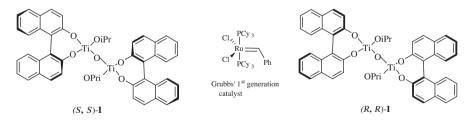
The α,β -unsaturated δ -lactones (γ -pyrone derivatives) have frequently been isolated from various natural sources.¹ They are known to posses different interesting biological properties including cytotoxic, antiviral and antibacterial activities.² (Z)-cryptomoscatone D2 (1), a novel compound of this group, was isolated from Cryptocarya concinna, a tree of the laurel family.³ The compound contains an α,β -unsaturated δ -lactone ring along with two hydroxyl groups having opposite stereostructure and an olefinic system with (Z)-configuration. The bioactivity of this compound was studied and it was identified as a G2 checkpoint inhibitor while examining in human breast carcinoma MCF-7 cells.^{3b} However, to our knowledge, the synthesis of this compound has not yet been synthesized though some structurally related compounds with (*E*)-configuration have earlier been reported.⁴ In continuation of our work⁵ on the construction of bioactive naturally occurring compounds we accomplished the synthesis of **1** which we would like to describe here.

 $^{\scriptscriptstyle{\pm}}$ Part 60 in the series 'synthetic studies on natural products'.


* Corresponding author. Tel./fax: +91 40 7160512. E-mail address: biswanathdas@yahoo.com (B. Das).

The retrosynthetic analysis (Scheme 1) revealed that the compound **1** can be prepared from the ester **2** which in turn can be synthesized from the unsaturated diol **3** generated from propane-1,3-diol (**4**).

The synthesis of (*Z*)-cryptomoscatone D2 (**1**) was initiated (Scheme 2) by protecting one of the hydroxyl groups of propane-1,3-diol (**4**) as the benzyl ether by treatment with BnBr using NaH and TBAI to form the compound **5**. The compound **5** was oxidized with PCC to the corresponding aldehyde which underwent Maruoka asymmetric allylation⁶ employing (S)-binol titanium complex, (*S*,*S*)-**I** and allyl tributyl stannane to produce the chiral homoallylic alocohol **6** (ee 96%).⁷ The hydroxyl group of this


⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2012.02.025

Scheme 2. Synthesis of (*Z*)-cryptomoscatone D2 (**1**). Reagents and conditions: (a) BnBr, NaH, TBAI, THF. 0 °C to rt, 2 h, 87%; (b) (i) PCC, celite, CH₂Cl₂, rt, 2 h; (ii) (*S*,*S*)-I (10 mol %), allyltributyltin, 4 Å MS, CH₂Cl₂, -20 °C, 72 h, ee 96%, 85% (over two steps); (c) TBDPSCI, imidazole, cat. DMAP, CH₂Cl₂, 0 °C to rt, 4 h, 88%; (d) Li in naphthalene, -20 °C, 3 h, 91%; (e) (i) IBX, CH₂Cl₂, DMSO, 0 °C to rt, 6 h; (ii) Phenyl acetylene, *n*-BuLi, anhyd THF, -20 °C, 3 h, 84% (over two steps); (f) (i) 4NO₂-PhCOOH, TPP, DIAD, anhyd THF, 0 °C to rt, 12 h (ii) K₂CO₃, MeOH, 1 h, 87% (over two steps); (g) TBAF, dry THF, 0 °C to rt, 4 h, 95%; (h) 2,2-DMP, PPTS, CH₂Cl₂, 0 °C, 30 min, 91%; (i) (i) 0SO4, NMO, acetone/H₂O, NaIO₄, 27 °C, 4 h; (ii) (*R*,*P*)-I (10 mol %), allyltributyltin, 4 Å MS, CH₂Cl₂, -20 °C, 72 h, 75% (over two steps); (j) acryloyl chloride, ⁱPr₂NEt, CH₂Cl₂, -78 °C, 2 h, 90%; (k) Grubbs' 1st generation catalyst (10 mol %), CH₂Cl₂, reflux, 12 h, 72%; (l) 4 N HCl, MeOH, 0 °C, 30 min, 92%; (m) Pd/CaCO₃, H₂, quinoline, EtOAc, rt, 6 h, 90%.

alcohol **6** was protected as the TBDPS ether by treatment with TBDPS-Cl and imidazole to form **7** which was subsequently treated with Li in naphthalene to generate the primary alcohol **8**. The alcohol **8** was then oxidized with IBX to the corresponding aldehyde which was reacted with phenyl acetylene using *n*-BuLi to afford the diastereoisomeric propargyl alcohols **9** (major) and **10** (minor) (diastereoisomeric ratio 70:30). Both the compounds were separated by column chromatography. The minor alcohol **10** was subsequently converted into **9** under Mitsunobu conditions⁸ by reaction with 4-nitro benzoic acid, TPP and DIAD followed by treatment with

to Maruoka asymmetric allylation using (*R*)-binol titanium complex (*R*,*R*)-**I** to form the homoallyl alcohol **12**. The alcohol **12** was converted into the acryloyl ester **2** which underwent the ring closing metathesis¹⁰ using Grubbs' 1st generation catalyst to form the α , β -unsaturated lactone **13**. The deprotection of the acetonide group (4N HCl, MeOH) of **13** furnished the diol **14**. Finally the hydrogenation of the later one employing Lindlar's catalyst¹¹ yielded the target molecule,(*Z*)-cryptomoscatone D2 (**1**) whose optical and spectral properties were found to be identical to those of the natural product.^{3b}

methonolic K_2CO_3 . Next, the deprotection of TBDPS ether group of **9** with TBAF yielded the required diol **3** which on treatment with DMP and PPTS afforded the acetonide **11**. The 1,3-*anti* relationship in **11** was realized⁹ by analysis of its ¹³C NMR spectrum which showed that the methyl carbons resonated at δ 24.8 and the acetonide carbon at δ 100.3. Compound **11** was treated with OsO₄ and NMO in aqueous acetone and subsequently the resulting diol was treated with NalO₄ to form an aldehyde which was again subjected

In conclusion, we have developed¹² the first stereoselective total synthesis of a natural bioactive lactone (*Z*)-cryptomoscatone D2 starting from propane-1,3-diol by utilizing the Maruoka allylation, ring closing metathesis and selective reduction of the alkyne as the key steps. This strategy can be applied for the preparation of (*Z*)-isomers of several naturally occurring lactones having olefinic side chain with (*E*)-configuration and both the (*E*)- and (*Z*)-isomers can be utilized to study and compare their biological properties.

Acknowledgments

The authors thank CSIR and UGC, New Delhi for financial assistance. They are also thankful to NMR and Mass divisions of IICT for spectral recording.

References and notes

- (a) Juliawaty, L. D.; Kitajima, M.; Takayama, H.; Achmad, S. A.; Aimi, N. *Phytochemistry* **2000**, *54*, 989; (b) Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garcia-Rojas, C. M. *Tetrahedron* **2001**, *57*, 47; (c) Boalino, D. M.; Connolly, J. D.; Mclean, S.; Reynolds, W. F.; Tinto, W. F. *Phytochemistry* **2003**, 64, 1303; (d) Grkovic, T.; Blees, J. S.; Colburn, N. H.; Schmid, T.; Thomas, C. L.; Henrich, C. J.; McMohan, J. B.; Gustafson, K. R. J. Nat. Prod. **2010**, *74*, 1015.
- (a) Rychnovsky, S. D. Chem. Rev. **1995**, *95*, 2021; Hagen, S. E.; Vara Prasad, J. V. N.; Tait, B. D. Adv. Med. Chem. **2000**, *5*, 159; (c) Jodynis-Liebert, J.; Murias, M.; Bloszyk, E. Planta Med. **2000**, *66*, 199; (d) Murga, J.; Falomir, E.; García-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett. **2002**, *4*, 3447; (e) Inayat-Hussain, S.; Annuar, B. O.; Din, L. B.; Ali, A. M.; Ross, D. Toxicol. In Vitro **2003**, *17*, 433.
- (a) Cavalheiro, A. J.; Yoshida, M. Phytochemistry 2000, 53, 811; (b) Sturgeon, C. M.; Cinel, B.; Diaz-Marrero, A. R.; McHardy, L. M.; Ngo, M.; Anderson, R. J.; Roberge, M. Cancer Chemother. Pharmocol. 2008, 61, 407.
- (a) Das, B.; Balasubramanyam, P.; Chinna Reddy, G.; Salvanna, N. Synthesis 2011, 3706; (b) Das, B.; Nagendra, S.; Reddy, Ch. R. Tetrahedron: Asymmetry 2011, 22, 1249.
- (a) Das, B.; Kumar, D. N. Synlett 2011, 1285; (b) Das, B.; Satyalakshmi, G.; Suneel, K. Synthesis 2011, 2437; (c) Das, B.; Krishnaih, M.; Nagendra, S.; Reddy, Ch. R. Lett. Org. Chem. 2011, 8, 244.
- 6. Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708.
- Determined by Chiral HPLC. Column: chiralcel OB-H; mobile phase: isopropyl alohol/hexane (10:90); flow rate: 1 mL/min; detection: PDA.
- 8. Mitsunobu, O. Synthesis 1981, 1.
- 9. Rychnovsky, D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945.

- (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413; (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
- (a) Corey, E. J.; Goto, G.; Marfat, A. J. Am. Chem. Soc. **1980**, 102, 6607; (b) Georges, Y.; Ariza, X.; Garcia, J. J. Org. Chem. **2008**, 2009, 74.
- 12. The spectral data of some selected compounds are given below. *Compound* **3**: $[\alpha]_{25}^{25}$ = +32.4 (*c* = 2.4, CHCl₃); IR: 3357, 1641, 1490, 1332 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.45–7.36 (2H, m), 7.30–7.22 (3H, m), 5.81 (1H, m), 5.19–5.08 (2H, m), 4.88 (1H, br s), 4.22 (1H, m), 3.81 (1H, br s), 2.95 (H, br s), 2.32–2.22 (2H, m), 1.93–1.87 (2H, m); ¹³C NMR (50 MHz, CDCl₃): δ 134.2, 131.9, 128.5, 128.4, 122.8, 118.5, 89.9, 85.1, 68.3, 61.1, 42.2, 42.0; ESIMS: *m*/*z* 239 [M+Na]*; Anal. Calcd for C₁₄H₁₆O₂: C, 77.78; H, 7.41. Found: C, 77.62; H, 7.38.

Compound **12**: $[\alpha]_{D}^{25} = -6.6$ (c = 0.7, CHCl₃); IR: 3449, 1625, 1436, 1254 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.43–7.35 (2H, m), 7.32–7.22 (3H, m), 5.81 (1H, m), 5.27–5.01 (2H, m), 4.92 (1H, t, J = 7.0 Hz), 4.71 (1H, br), 4.49 (1H, m), 3.90 (1H, m), 2.32–2.14 (2H, m), 1.99 (1H, m), 1.80 (1H, m), 1.68 (3H, s), 1.69–1.57 (2H, m), 1.35 (3H, s); ¹³C NMR (50 MHz, CDCl₃): δ 134.9, 131.9, 128.5, 128.4, 123.8, 118.7, 95.2, 89.8, 85.2, 65.3, 61.4, 61.3, 42.9, 42.0, 41.7, 25.0, 24.8; ESIMS: m/z 323 [M+Na]⁺; Anal. Calcd for C₁₉H₂₄O₃: C, 76.00; H, 8.00. Found: C, 76.21; H, 8.06.

 $\begin{array}{l} Compound \ \textbf{13}: \ [\alpha]_{2}^{D5} = +49.0 \ (c=0.8, {\rm CHCl}_3); \ {\rm IR}: \ 1712, \ 1639, \ 1463, \ 1258 \ {\rm cm}^{-1}; \ ^1{\rm H} \ {\rm NMR} \ (200 \ {\rm MHz}, \ {\rm CDCl}_3); \ \delta \ 7.49-7.42 \ (2{\rm H}, {\rm m}), \ 7.38-7.29 \ (3{\rm H}, {\rm m}), \ 6.90 \ (1{\rm H}, {\rm m}), \ 6.03 \ (1{\rm H}, {\rm d}, J=8.0 \ {\rm Hz}), \ 4.99 \ (1{\rm H}, {\rm t}, J=7.0 \ {\rm Hz}), \ 4.68 \ (1{\rm H}, {\rm m}), \ 4.51 \ (1{\rm H}, {\rm m}), \ 2.42-2.32 \ (2{\rm H}, {\rm m}), \ 1.98-1.88 \ (2{\rm H}, {\rm m}), \ 1.82-1.71 \ (2{\rm H}, {\rm m}), \ 1.70 \ (3{\rm H}, {\rm s}), \ 1.39 \ (3{\rm H}, {\rm s}), \ 1.38 \ (3{\rm H}, {\rm m}), \ 1.31 \ (3{\rm H}, {\rm m}), \ 1.31 \ (3{\rm H}, {\rm m}), \ 1.49 \ (3{\rm H}, {\rm m}), \ 1.39 \ (3{\rm H}, {\rm m}), \ 1.39 \ (3{\rm H}, {\rm m}), \ 1.31 \ ($