

Journal of Alloys and Compounds 257 (1997) 128-133

Ternary chlorides in the systems $ACl/HoCl_3$ (A=Cs, Rb, K)¹

M. Roffe, H.J. Seifert*

Inorganic Chemistry, University GH Kassel, H. Plett-Str. 40, D-34109 Kassel, Germany

Received 7 October 1996; received in revised form 2 December 1996

Abstract

The phase diagrams of the pseudo-binary systems $ACl/HoCl_3$ (A=Cs, Rb, K) were investigated by DTA and XRT. The existence of compounds A_3HoCl_6 , Cs_2HoCl_5 , $Cs_3Ho_2Cl_7$ and AHo_2Cl_7 could be confirmed. Additionally, the 2:1-compounds Rb_2HoCl_5 (Cs_2DyCl_5 -structure) and K_2HoCl_5 (K_2PrCl_5 -structure) were found. By solution enthalpy and e.m.f vs. *T* measurements in galvanic chlorine cells for solid electrolytes, the thermodynamic functions for the formation from ACl and HoCl₃ and for the formation from the compounds adjacent in the phase diagrams were measured.

The compounds A_3HoCl_6 could be prepared also from acetic acid solutions. From aqueous solutions, the ternary halides Cs_4HoCl_7 and Cs_3HoCl_6 crystallizing in the space group *Pbcm* were prepared. Anhydrous HoCl_3 can be obtained comfortably from holmium formiate at ~300 °C in an HCl gas stream. © 1997 Elsevier Science S.A.

Keywords: Ternary holmium chlorides; Phase diagrams; Thermodynamic properties; Preparations from acetic and formic acid

1. Introduction

In the course of investigations on the existence of ternary lanthanide chlorides $A_n LnCl_{n+3}$ (A=Cs, Rb, K) we had found that the decline of coordination number (CN) for the lanthanide ions with decreasing ionic radius depends also on the size of the A⁺ ions. For the group A_2LnCl_5 , e.g., the change from CN 7 (K_2PrCl_5 -type [1]) to CN 6 (Cs_2GdCl_5 [2]) occurs between Ln=Nd [3] and Sm [4] in the case of A=Cs, while Rb compounds with the K_2PrCl_5 -structure exist up to Rb₂GdCl₅ [5]; an analogous Tb compound is no longer stable [6].

Thus, it was of interest to find out whether this tendency continues on going to still smaller lanthanide ions. In this paper our observations on the systems $ACl/HoCl_3$ (A=Cs, Rb, K) are reported. From the literature, the only investigation on the system KCl/HoCl_3 [7] describes only two compounds: K₃HoCl₆ and KHo₂Cl₇. Unit cell dimensions for such compounds, which can be prepared without quenching/annealing, were given by Meyer [8].

2. Experimental

2.1. Chemicals

Starting compound was $HoCl_3 \cdot 6H_2O$, prepared from a solution of Ho_2O_3 (99.9%, Heraeus, Hanau) in hot hydrochloric acid. Alkali metal chlorides were dried at 500 °C.

2.2. Differential thermal analysis (DTA)

The DTA measurements were performed in a home-built device for samples (~0.5 g) in vacuum-sealed silica ampoules. In general, heating curves were recorded (heating rate=2 °C min⁻¹). Because HoCl₃ melt reacts with silica, only samples up to 80 mol% HoCl₃ were measured. HoCl₃ rich mixtures were melted in the DTA furnace approx. 20 ° above the alleged liquidus temperatures, homogenized by shaking and annealed. Mixtures with less than 50 mol% HoCl₃ were melted in a gas flame.

2.3. X-ray powder patterns

Powder patterns at ambient temperature were taken with a Philips PW 1050/25 goniometer equipped with a proportional counter and a vacuum attachment. During exposure (Cu-K α radiation) the samples were kept under He atmos-

^{*}Corresponding author.

¹Dedicated to Professor Roger Blachnik on the occasion of his 60th birthday.

phere. For high-temperature photographs a Simon-Guinier camera (Enraf-Nonius) was applied. Corundum powder was used as the internal standard; at 20 °C; a=475.92 pm, c=1299.00 pm; at 500 °C, a=479.32, c=1308.92 pm.

2.4. Solution calorimetry

The home-built isoperibolic calorimeter for samples of 2–4 g, dissolved in 1.1 l is described elsewhere [9]. From the enthalpies of solution, $\Delta_{sol}H_{298}^{\circ}$, the formation enthalpies of the ternary chlorides from $nAC1+HoCl_3$, $\Delta_{f}H_{298}^{\circ}$, were calculated, according to:

$$\Delta_{\rm f} H^{\circ} = \{\Delta_{\rm sol} H^{\circ}({\rm HoCl}_{3}) + n \Delta_{\rm f} H^{\circ}({\rm ACl})\}$$
$$- \Delta_{\rm sol} H^{\circ}(A_{n} {\rm HoCl}_{3+n})$$

2.5. E.m.f. measurements

A detailed description of the galvanic cell was given previously [10]. The measured potentials were generated by solid state reactions:

$$n \operatorname{ACl} + A_{x} \operatorname{HoCl}_{3+x} = A_{(n+x)} \operatorname{HoCl}_{(3+x+n)}$$

in the temperature range of 300-400 °C. The solid electrolytes (compressed disc) were separated by an A⁺ conducting diaphragm of sintered glass powder. The collected e.m.f vs. *T* values could be subjected to a linear regression analysis: e.m.f./mV=a+bT/K.

3. Results

3.1. Holmium (III) chloride

 $HoCl_3 \cdot 6H_2O$ loses water at ~70 °C, forming a dihydrate. Further dehydration to $HoCl_3 \cdot H_2O$ at 100–120 °C and to anhydrous $HoCl_3$ at 180–200 °C must be performed in an HCl gas stream to avoid hydrolysis. For a sample of 10 g, the last step needs three days of slow temperature elevation.

The peril of hydrolysis can be diminished when heating Ho formiate in HCl gas at 300 °C. Ho(HCOO)₃ is formed as a pink precipitate from a hot solution of HoCl₃·6H₂O (10 g) in formic acid (300 ml), bubbling N₂ through the solution.

The melting point of HoCl_3 is 700 °C; it was measured in a Pt crucible because a melt of holmium chloride reacts slowly with silica, as first described for ScCl_3 [11]. We could recently show that ErCl_3 when melted repeatedly in a silica ampoule gives rise to a double peak. The same holds for HoCl_3 . This is probably the reason for the strongly spreaded melting point values in the literature: 741 °C [12]; 718 °C [7,13]; 704 °C [14].

3.2. Ternary holmium (III) chlorides from solutions

From hydrochloric solutions of ACl and Ho₂O₃ in the correct molar ratio, ternary chlorides A₃HoCl₆ with A = Cs, Rb can be obtained by evaporation at ~120 °C. Cs₃HoCl₆ is formed in the *Pbcm* modification with Z=8 [15]:

$$a = 815.8(3) \text{ pm}; \quad b = 1306.6(5) \text{ pm}; \quad c = 2645.7(7) \text{ pm}$$

With CsCl in a molar ratio 4:1 instead of 3:1, the compound Cs_4HoCl_7 is formed (space group $R\bar{3}c$ with Z=3 [16]:

$$-a = 772.3(1) \text{ pm}; \quad c = 2599.9(1) \text{ pm}$$

When a solution of CsCl and HoCl₃ in a molar ratio of Cs:Ho=2:1 is evaporated at ~25 °C, the hexahydrate Cs₂HoCl₅·6H₂O is formed: space group $P2_1/c$ with Z=4

$$a = 834.0(3) \text{ pm};$$
 $b = 944.0(4) \text{ pm};$
 $c = 2004.0(5) \text{ pm};$ $\beta = 91.28(5)^{\circ} \text{ (still unpublished)}$

As found previously [17], anhydrous acetic acid is an excellent solvent system for the preparation of ternary metal chlorides: solutions of HoCl₃ hydrate and alkali metal carbonates in a molar ratio of A:Ho=3:1 were dissolved in acetic acid. When saturating the solutions with HCl gas, the anhydrous compounds A₃HoCl₆ precipitate. (For A=K it is suitable to use an excess of holmium chloride to avoid the co-precipitation of KCl). The hexachloro holmiates with A=Cs, Rb crystallizes with the Cs₃BiCl₆ structure (C2/c), K₃HoCl₆ with the K₃MoCl₆ structure ($P2_1/c$).

3.3. Phase diagrams and crystal structures

Fig. 1 illustrates the results of the DTA investigations. Congruently melting compounds A_3HoCl_6 and AHo_2Cl_7 exist in all systems (A=K, Rb, Cs). All compounds, with the exception of KHo₂Cl₇, undergo reversible phase transitions. In the system CsCl/HoCl₃ two additional, incongruently melting compounds exist: Cs₂HoCl₅ and Cs₃Ho₂Cl₉. The Rb compound Rb₂HoCl₅ is stable above 414 °C and melts incongruently at 512 °C. By quenching a sample annealed at 450 °C, the main amount, sufficient for an X-ray measurement, could be obtained in a metastable state. In the system KCl/HoCl₃, the compound K₂HoCl₅, decomposing above 415 °C, was found in addition to the compounds K₃HoCl₆ and KHo₂Cl₇, already described by Kurshunov et al. [7].

By analogous indexing of powder patterns the crystal structures of K_2HoCl_5 (K_2PrCl_5 type) and Rb_2HoCl_5 (Cs_2DyCl_5 type) could be determined; the parameters of the unit cell of $Cs_3Ho_2Cl_9$ [18] were refined. All high-temperature modifications of the compounds A_3HoCl_6

Fig. 1. Phase diagrams of the systems $ACl/HoCl_3$ with A=Cs, Rb, K.

have the cubic elpasolite-type structure. Their lattice parameters were determined at 500 °C. L-Cs₃HoCl₆ crystallizes in the space group C2/c (Cs₃BiCl₆-type), L-K₃HoCl₆ in $P2_1/c$ (K₃MoCl₆ type). All unit cell parameters together with the values of Meyer for the other compounds are compiled in Table 1.

As found by DSC, K_3 HoCl₆ has another phase transition at 137 °C, which is not shown in Fig. 1. At this temperature, the monoclinic *a*- and *c*-axis have the same value:

 $a = c = 1308.0 \text{ pm}; \quad b = 745 \text{ pm}; \quad \beta = 109.4^{\circ}.$

For this condition an orthorhombic cell can be given based on the diagonal of the monoclinic *ac*-plane.

Further investigations of the consequences of this feature are conducted with the analogous modification of K_3 ErCl₆.

Table 1						
Unit cell	parameters	of	ternary	holmium	(III)	chlorides

3.4. Solution calorimetry and e.m.f. measurements

The solution enthalpy of HoCl₃ was found to be -209.4 ± 1 kJ mol⁻¹ (literature: -210.25 [22]; -209.20 [23]; -213.43 [24]). The solution enthalpies for the alkali metal chlorides were taken from previous investigations; i.e., CsCl=18.1(2); RbCl=17.6(2); KCl = 17.9(1) kJ mol⁻¹. The results of the measurements are given in Table 2. Because the not-congruently melting compounds A₂HoCl₅ could not be obtained by annealing or quenching (Rb₂HoCl₅). For this reason, no solution enthalpies were measured. E.m.f. measurements could be obtained for all compounds, except the HoCl₃ richest, AHo₂Cl₇. For these compounds, the potential differences were higher than ~500 mV; according to former experiences, the e.m.f. cells break down at voltages of this magnitude.

Compound	Space	a/pm	b/pm	c/pm	β°	$V_{\rm m}/{\rm cm}^3~{\rm mol}^{-1}$	
	group						
H-Cs ₃ HoCl ₆	Fm3m	1152.2(2)				230.3	
H-Rb ₃ HoCl ^a ₆	Fm3m	1121.4(2)				212.3	
H-K,HoCl	Fm3m	1095.2(1)				197.8	
L-Cs ₃ HoCl ₆	C2/c	2692.7(8)	813.1(2)	1313.9(5)	100.23(3)	213.1	
L-Rb ₃ HoCl ₆ [19]	C2/c	2577.2(3)	786.8(1)	1280.2(2)	99.56(1)	192.7	
L-K ₃ HoCl ₆	P2,/c	1308.4(7)	772.1(4)	1263.6(8)	110.02(4)	180.6	
Cs ₂ HoCl ₅ [20]	Pnma	951.5(2)	745.4(1)	1520.2(2)		162.4	
Rb ₂ HoCl ₅	Pnma	957.0(4)	727.9(2)	1464.2(3)		153.6	
K ₂ HoCl ₅	Pnma	1264.2(4)	856.2(4)	792.8(2)		129.2	
Cs ₃ Ho ₂ Cl ₉	RĴc	1311.3(3)		1842.9(5)		275.4	
CsHo ₂ Cl ₇ [21]	Pnma	695.6(1)	1264.7(4)	1334.3(2)		176.7	
RbHo ₂ Cl ₇ [21]	Pnma	692.1(1)	1263.6(3)	1286.9(1)		169.5	
KH0 ₂ Cl ₇ [21]	P2,/c	686.7(7)	1258.3(2)	1272.1(2)	89.36(3)	165.5	

^a Measured at 500 °C.

Table 2 Solution enthalpies $\Delta_{sol}H^{\circ}$ and enthalpies of formation from the binary compounds, $\Delta_{i}H^{\circ}$ (in KJ mol⁻¹)

Compound	$\Delta_{soi}H_{298}^{\circ}$	$\Delta_{ m f} H_{ m 293}^{\circ}$
Cs ₃ HoCl ₆ (Pbcm)	-60.1(3)	- 95.0
$Cs_{HoCl_{6}}(C2/c)$	- 60.5(5)	-94.6
1/2 Cs, Ho, Cl,	- 117.9(6)	-64.4
1/2 CsHo,Cl,	-167.6(1)	- 32.8
Rb, HoCl	-79.8(3)	- 76.8
1/2 RbHo,Cl,	-168.1(1)	- 32.5
K,HoCl	-102.2(8)	- 53.5
1/2 KH0 ₂ Cl ₇	-173.2(4)	-27.3

The measured regression and Gibbs-Helmholtz equations, $\Delta_r G^\circ = \Delta_r H^\circ - \Delta_r S^\circ T$, for the reaction in the cell are listed below. They are mean values of two measurements. The range of error was smaller than 1 kJ mol⁻¹ for the energy values and 0.8 JK⁻¹mol⁻¹ for the entropies.

Reaction:
$$CsCl + Cs_{0.5}HoCl_{3.5} = Cs_{1.5}HoCl_{4.5}$$

 $(T = 580-670 \text{ K})$
e.m.f./mV = 335.2 + 0.0208 T/K
 $\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -32.3 - 0.0020 T/K$
Reaction: 0.5 $CsCl + Cs_{1.5}HoCl_{3.5} = Cs_2HoCl_5$
 $(T = 600-660 \text{ K})$
e.m.f./mV = 364.0 - 0.0698 T/K
 $\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -17.6 + 0.0034 T/K$
Reaction: $CsCl + Cs_2HoCl_5 = Cs_3HoCl_6$
 $(T = 570-660 \text{ K})$
e.m.f./mV = 174.4 + 0.0964 T/K
 $\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -16.8 - 0.0093 T/K$

Rubidium compounds:

Reaction: 2.5 RbCl+Rb_{0.5}HoCl_{3.5} = Rb₃HoCl₆
(
$$T$$
=600-690 K)
e.m.f./mV = 163.3 + 0.1536 T/K
 $\Delta_r G^{\circ}$ /kJ mol⁻¹ = -39.4 - 0.0371 T/K

Potassium compounds:

Reaction: $1.5\text{KCl} + \text{K}_{0.5}\text{HoCl}_{3.5} = \text{K}_{2}\text{HoCl}_{5}$ (T = 600-640 K)e.m.f./mV = 265.5 - 0.0759 T/K $\Delta_{r}G^{\circ}/\text{kJ} \text{ mol}^{-1} = -38.4 + 0.0110 \text{ T/K}$ Reaction: $\text{KCl} + \text{K}_{2}\text{HoCl}_{5} = \text{K}_{3}\text{HoCl}_{6}$ (T = 600-640 K)e.m.f./mV = -118.0 + 0.4807 T/K $\Delta_{r}G^{\circ}/\text{kJ} \text{ mol}^{-1} = 11.4 - 0.0464 \text{ T/K}$

In Table 3, the enthalpies from e.m.f. measurements and solution calorimetry are compared and mutually completed: $\Delta_t H^\circ$ for the compounds AHo₂Cl₇ are taken from

solution calorimetry, for the compounds A_2HoCl_5 from $\Delta_r H^\circ$ ($A_{0.5}HoCl_{3.5}$) and $\Delta_r H^\circ$ (A_2HoCl_5).

The differences between both sets are small for the $HoCl_3$ rich compounds, larger for the 3:1 compounds with Cs and Rb.

A ternary compound is stable when the free enthalpy of formation from the two adjacent compounds in its pseudobinary system, the free enthalpy of syn-reaction, $\Delta_{syn}G^{\circ}$, is negative. At low temperature the entropy term $\Delta S \cdot T$ is neglegible; then it is sufficient that $\Delta_{syn}H^{\circ}$ is negative (exothermic syn-reaction). We have calculated such synreaction energies: for the AHo₂Cl₇ compounds, $\Delta_{syn}H^{\circ}$ values can be taken directly from Table 3, for all other compounds Gibbs-Helmholtz equations from e.m.f. measurements, setting $\Delta_{f}G^{\circ}$ (A_{0.5}HoCl_{3.5})=0 were used. For the compounds A₃HoCl₆ the neighbour is ACl, therefore it is $\Delta_{r}G^{\circ} = \Delta_{syn}G^{\circ}$. For Rb₂HoCl₅ no thermodynamic values could be measured.

Syn-reaction enthalpies for compounds A_{0.5}HoCl_{3.5}:

 $\frac{1/3 \text{ Cs}_{1.5}\text{HoCl}_{4.5} + 2/3 \text{ HoCl}_{3} = \text{Cs}_{0.5}\text{HoCl}_{3.5}}{\Delta_{\text{syn}}H^{\circ} = -11.3 \text{ KJ mol}^{-1}}$ $\frac{1/6 \text{ Rb}_{3}\text{HoCl}_{6} + 5/6 \text{ HoCl}_{3} = \text{Rb}_{0.5}\text{HoCl}_{3.5}}{\Delta_{\text{syn}}H^{\circ} = -19.7 \text{ KJ mol}^{-1}}$ $\frac{1/4 \text{ K}_{2}\text{HoCl}_{5} + 3/4 \text{ HoCl}_{3} = \text{K}_{0.5}\text{HoCl}_{3.5}}{\Delta_{\text{syn}}H^{\circ} = -10.9 \text{ KJ mol}^{-1}}$

Gibbs-Helmholtz equations for $\Delta_{syn}G^{\circ}$:

2/3 $Cs_2HoCl_5 + 1/3 Cs_{0.5}HoCl_{3.5} = Cs_{1.5}HoCl_{4.5}$ $\Delta_{syn}G^{\circ}/KJ mol^{-1} = 1.0 - 0.0029 T/K$ $(\Delta_{syn}G^{\circ} = 0 \text{ at } 345 \text{ K} (72 °\text{C}))$ 1/3 $Cs_3HoCl_6 + 2/3 Cs_{1.5}HoCl_{4.5} = Cs_2HoCl_5$ $\Delta_{syn}G^{\circ}/KJ mol^{-1} = -6.1 + 0.0053 T/K$ $CsCl + Cs_2HoCl_6 = Cs_3HoCl_6$ $\Delta_{syn}G^{\circ}/KJ mol^{-1} = -16.8 - 0.0093 T/K$ 2.5 $RbCl + Rb_{0.5}HoCl_{3.5} = Rb_3HoCl_6$ $\Delta_{syn}G^{\circ}/KJ mol^{-1} = -39.4 - 0.0371 T/K$ 0.6 $K_3HoCl_6 + 0.4 K_{0.5}HoCl_{3.5} = K_2HoCl_5$ $\Delta_{syn}G^{\circ}/KJ mol^{-1} = -22.2 + 0.0322 T/K$ $(\Delta_{syn}G^{\circ} = 0 \text{ at } 689 \text{ K} (416 °C)$ From DTA heating curves: 415 °C.) $KCl + K_2HoCl_5 = K_3HoCl_6$ = 11.4 - 0.0464 T/K $(\Delta_{syn}G^{\circ} = 0 \text{ at } 246 \text{ K})$

4. Discussion

- There is an analogy between the systems $ACl/HoCl_3$ and $ACl/DyCl_3$ (A = K, Rb, Cs):
- Congruently melting compounds ALn₂Cl₇, (Ln=Dy, Ho) are formed exothermally from their neighbouring compounds and from ACl and LnCl₃.

Table 3

Reaction and formation enthalpies of ternary holmium chlorides (in kJ mol⁻¹)

$CsCl + Cs_3$	HoCl ₆ Cs ₂] I	HoCL I	1/2 Cs ₃	Ho ₂ Cl,	1/2 Cs	Ho ₂ Cl ₇	HoCl ₃	
	158	E	17.6	-32.3	┸╌┼╸	32.8		
	< [10,0]	t –				-65.1		
EMF				4				
(Δ <mark>,</mark> H°)		•		-82.7	′ <u> </u>			
		·	-99.5					
			94.6					
CsCI+HoCl ₃			27.0		[-			
Solution.				82.0	<u></u>			
calorimetry		[-		-64.4		
(∆ _r H°)						660		
-					-	-32.8		
RbCl+ Rb ₃		(Rb ₂ H	oCl ₅)	1/2 RbH	lo ₂ Cl ₇	22.5	HoCl ₃	
	-3	9.4				-32.5		
EMF			-71 (.				
(Δ _r H°)								
		[
KUCI + HUCI3								
Solution-						-32.5		
calorimetry		Ì						
(∆ _r H°)		1		_				
			-76	5.8				
	1	1		I			1	
KCI+ K.F	loCl.	K Ha	ri -	1/2 71	6.01		HoCl.	
1101 1 132]	K2110				-27.3		
	+11.4	L	-32	<u>.4</u>				
EMF			-27	7.0				
(A ₁ H*)			-					
				+	[·		
KC1+ H-C1			_					
NU T 110U3				53.5		· · · · · · · · · · · · · · · · · · ·		
Solution-			_^	26.2	[
calorimetry								
(∆ _f H⁰)		ŀ	4			-65.7		
-								
							l	

- The compounds Cs₂LnCl₅ crystallize in the Cs₂DyCl₅ structure with octahedral surroundings of the Ln³⁺ ions, while the potassium compounds K₂LnCl₅ have CN 7 (K₂PrCl₅ type). Both compounds are formed exothermally.
- The compounds Cs₃LnCl₆ and Rb₃LnCl₆ have exothermal syn-reaction enthalpies too. The high-temperature modifications (transition temperature ~400 °C) have extremely high melting points near 900 °C. The latter is also true for the potassium compounds. However, they have endothermic syn-reaction enthalpies and exist only at elevated temperatures K₃DyCl₆ above 312 K, K₃HoCl₆ above 246 K by a sufficiently high gain in syn-reaction entropy (46.5 and 46.4 JK⁻¹mol⁻¹)

However, there are also differences between both systems.

- 1. For K₃HoCl₆, except for L-K₃HoCl₆ (K₃MoCl₆-type) and H-K₃HoCl₆ (elpasolite-type), an additional modification exists between 137 °C and 378 °C with a presumably orthorhombic unit cell.
- 2. Holmium is the first element in the series starting with lanthanum, for which a 3:2 compound $Cs_3Ho_2Cl_9$ exists. In this enneachloride, isolated pairs of face-sharing octahedra exist. Such double octahedra $[Ho_2Cl_9]^{3-}$ are less deformable than isolated octahedra. Therefore, they are only formed if the radius ratio r_{Ln}^{3+}/r_{Cl}^{-1} is near to the ideal value for six ligands, i.e. 0.41. With $r_{Ho}^{3+} = 0.894$ Å [25] and $r_{Cl}^{-} = 1.81$ Å, the ratio is 0.49. An analogous Rb compound does not exist because the Rb⁺ ion is too small to be surrounded by the necessary twelve Cl⁻ ions.
- 3. In the Rb systems the compound Rb_2HoCl_5 exists having the Cs_2DyCl_5 structure with corner connected [HoCl_4Cl_{2/2}] octahedra. The analogous compounds with Dy and Tb do not exist, while Rb_2GdCl_5 crystallizes in the K_2PrCl_5 type with CN=7 for Ln^{3+} . Rb_2HoCl_5 is stable at temperatures higher than 414 °C.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Their help is gratefully acknowledged.

References

- [1] G. Meyer, E. Hüttl, Z. anorg. allg. Chem., 497 (1983) 191.
- [2] G. Meyer, Z. anorg. allg. Chem., 469 (1980) 149.
- [3] H.J. Seifert, H. Fink, J. Uebach, J. Therm. Anal., 33 (1988) 625.
- [4] H.J. Seifert, G. Thiel, Thermochim. Acta, 133 (1988) 275.
- [5] H.J. Seifert, J. Sandrock, G. Thiel, Z. anorg. allg. Chem., 598/599 (1991) 307.
- [6] S. Mitra, J. Uebach. H.J. Seifert, J. Solid State Chem., 115 (1995) 484.
- [7] B.G. Korshunov, D.V. Drobot, I.E. Galchenko, and Z.N. Shevtsova, Z. Neorg. Khim., 11 (1966) 223.
- [8] G. Meyer, Prog. Solid State Chem., 14 (1982) 141.
- [9] G. Thiel, H.J. Seifert, Thermochim. Acta, 22 (1978) 363.
- [10] H.J. Seifert, G. Thiel, J. Chem. Thermodyn., 14 (1982) 1159.
- [11] L.D. Polyachenok, L.D. Nazarov and O.G. Polyachenok, Russ. J. Phys. Chem., 52 (1978) 1021.
- [12] V.F. Goryuskin, S.A. Zalymova and A.I. Poshevneva, Zh. Neorg. Khim., 35 (1990) 3081.
- [13] I.A. Kahwa, J.Therm. Anal., 25 (1982) 525.
- [14] G. Garton, P.J. Walker, Mat. Res. Bull., 17 (1982) 1227.
- [15] G. Reuter, G. Frenzen, J. Solid State Chem., 166 (1995) 329.
- [16] G. Reuter, J. Sebastian, G. Frenzen, Acta Cryst., C52 (1996) 1859.
- [17] M. Prien, G. Koske, H.J. Seifert, Z. Anorg. Allg. Chem., 620 (1994) 1943.
- [18] G.Meyer, A. Schönemund, Mat. Res. Bull., 15 (1980) 89.
- [19] H. Mattfeld, G. Meyer, Z. anorg. allg. Chem., 618 (1992) 13.
- [20] G. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z. Anorg. Allg. Chem., 521 (1985) 161.
- [21] G. Meyer, P. Ax, A. Cromm, H. Linzmeier, J. Less-Common Met., 98 (1984) 323.
- [22] R. Blachnik, D. Selle, Thermochim. Acta., 33 (1979) 301.
- [23] H. Bommer, E. Hohmann, Z. anorg. allg. Chem., 248 (1991) 373.
- [24] L.R. Morss, J. Phys. Chem., 75 (1971) 392.
- [25] R.D. Shannon and C.T. Prewitt, Acta. Cryst. Sec. B, 25 (1969) 925.