ISSN 1070-3632, Russian Journal of General Chemistry, 2013, Vol. 83, No. 6, pp. 1178–1179. © Pleiades Publishing, Ltd., 2013. Original Russian Text © H.S. Attaryan, V.I. Rstakyan, S.S. Hayotsyan, G.V. Asratyan, 2013, published in Zhurnal Obshchei Khimii, 2013, Vol. 83, No. 6, pp. 1048–1049.

LETTERS TO THE EDITOR

Non-catalytic Alkylation of Benzylamine with 1,3,5-Trimethyl-1*H*-pyrazol-4-ylmethanol

H. S. Attaryan, V. I. Rstakyan, S. S. Hayotsyan, and G. V. Asratyan

Institute of Organic Chemistry, Research and Technology Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, pr. Azatutyana 26, Yerevan, 0014 Armenia e-mail: vrstakyan@gmail.com

Received July 16, 2012

DOI: 10.1134/S1070363213060352

We previously showed [1] that non-catalytic alkylation of aniline with 1,3,5-trimethyl-1*H*-pyrazol-4-ylmethanol (I) involves the nitrogen atom of aniline with formation of the corresponding *N*-pyrazolylmethyl derivative, whereas no C-alkylated derivative was isolated. We presumed that the alkyla-tion of benzylamine with 1,3,5-trimethyl-1*H*-pyrazol-4-ylmethanol (I) should also lead N-alkylation product. The reaction was carried out by heating com-pound I with a large excess of benzylamine at the boiling point in the absence of solvent and catalyst. As a result, instead of the expected N-(pyrazolylmethyl)-benzylamine II, from the reaction mixture, by vacuum distillation, we isolated dipyrazolylmethane (IV) and

N-benzylidenebenzylamine (**VII**). The formation path of bis(1,3,5-trimethyl-1*H*-pyrazol-4-yl)methane (**IV**) was studied by us in detail in [2].

Thus we have shown that compound I in the reaction with benzylamine acts as a source of formaldehyde [2] rather than as alkylating agent (in contrary to the reactions with phenol and aniline [1, 3]). Formaldehyde generated *in situ* reacts with benzylamine to produce intermediate *N*-methylidenebenzylamine (V), triadic prototropic rearrangement of the latter yields *N*-benzylidenemethanamine (VI) [4], and the final amine exchange reaction between VI and benzylamine leads to compound VII via elimination of methanamine.

The structure of **VII** was confirmed by the IR and ¹H NMR data. The IR spectrum of **VII** characteristically contained absorption bands due to stretching vibrations of the HC=N bond at 1640 cm⁻¹ and benzene ring at 1500–1600 cm⁻¹. In the ¹H NMR spectrum of **VII**, the CH₂ group gave a signal at δ 4.82 ppm, the HC=N proton resonated in a weak field (δ 8.40 ppm), and aromatic proton signals were observed in the region δ 7.2–7.82 ppm.

N-Benzylidenebenzylamine (VII) and bis(1,3,5trimethyl-1*H*-pyrazol-4-yl)methane (IV). A mixture of 43 g of benzylamine and 6 g of 1,3,5-trimethyl-1*H*pyrazol-4-ylmethanol (I) was heated for 4–5 h under reflux. After removal of excess benzylamine, the residues was distilled under reduced pressure to isolate 1.5 g (64%) of compound **VII** with bp 140°C (2 mm), $n_D^{20} = 1.600$ [5]. ¹H NMR spectrum, δ , ppm: 4.78 d (2H, CH₂, J = 1.3), 7.17–7.32 m (5H, C₆H₅), 7.37–7.42 m (3H, Ph), 7.73–7.78 m (2H, Ph), 8.40 t (1H, N=CH, J = 1.3). Found, %: C 86.45; H 6.20; N 7.43. C₁₄H₁₃N. Calculated, %: C 86.15; H 6.66; N 7.07. In addition, 2.3 g (50%) of dipyrazolylmethane **IV** [2] was isolated from the reaction mixture; mp 87°C (from petroleum ether).

The IR spectra were recorded on a Specord 75 IR spectrometer from thin films. The ¹H NMR spectra were measured on a Varian Mercury-300 instrument at 300 MHz using DMSO- d_6 as solvent.

REFERENCES

- Attaryan, H.S., Rstakyan, V.I., Hayotsyan, S.S., and Asratyan, G.V., *Russ. J. Gen. Chem.*, 2012, vol. 82, no. 1, p. 172.
- Baltayan, A.O., Rstakyan, V.I., Attaryan, O.S., and Asratyan, G.V., *Russ. J. Gen. Chem.*, 2010, vol. 80, no. 6, p. 1206.
- Attaryan, O.S., Gevorkyan, A.A., Antanosyan, S.K., Panosyan, G.A., and Asratyan, G.V., *Russ. J. Gen. Chem.*, 2008, vol. 78, no. 3, p. 506.
- Baddar, T.G. and Iskander, Z., *Nature*, 1951, vol. 167, p. 1069.