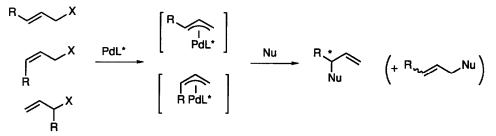
Asymmetric Allylic Amination Catalyzed by Chiral Ferrocenylphosphine-Palladium Complexes

Tamio Hayashi* and Kohei Kishi

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University, Kitaku, Sapporo 060, Japan


Akihiro Yamamoto and Yoshihiko Ito*

Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

Abstract: A palladium complex bearing chiral (hydroxyalkyl)ferrocenylphosphine ligand was found to be a highly regio-and stereoselective catalyst for the asymmetric allylic amination of 2-butenyl acetates with benzylamine, the nucleophilic attack of the amine taking place selectively on the more substituted end of the π -allylpalladium intermediate to give optically active 3-benzylamino-1-butene of up to 84% ee.

Our continuing studies utilizing chiral ferrocenylphosphine-palladium complexes for catalytic asymmetric allylic substitution reactions have led to several approaches to the synthesis of optically active compounds.¹⁻⁵ One of the major problems in developing the palladium-catalyzed asymmetric reactions is the limitation of the substitution patterns of allylic substrates.⁶ Most of the substrates so far reported are those giving π -allylpalladium intermediates containing the same two aryl or alkyl groups at 1 and 1,⁷ or 1 and 3 positions.^{1,8} Here we wish to report a new type of asymmetric allylic substitution where π -allyl intermediates undergo regioselective nucleophilic attack on the substituted end of π -allyl group containing an alkyl group at one of the terminal positions (Scheme 1).

Scheme 1

We have examined several nitrogen nucleophiles and chiral phosphine-palladium catalysts for regioselectivity and stereoselectivity in allylic amination of (E)-2-butenyl acetate ((E)-2a). It was found that the combination of benzylamine (3a) and chiral ferrocentylphosphine ligand, (R)-N-methyl-N-bis(hydroxymethyl)methyl-1-[(S)-1',2-bis(diphenylphosphino)ferrocenyl]ethylamine ((R)-(S)-1a)^{1,9} gave rise to regioselective carbon-nitrogen bond formation at the methyl substituted position yielding branched allylamine, 3-benzylamino-1-butene (4a) preferentially (Scheme 2). The results are summarized in Table 1. The ratio of 4a to linear allylamine, 1benzylamino-2-butene (5a) was 97 to 3 in the amination at 0 °C (entry 1).¹⁰ The enantiomeric purity of 4a $([\alpha]^{20}_{D} + 7.2^{\circ}$ (c 2.1, chloroform)), determined by HPLC analysis with a chiral stationary phase column, was 84% ee. The configuration of (+)-4a was determined to be (S) by converting¹¹ it into known alanine derivative, (-)-(S)-methyl N-benzyl-N-trifluoroacetylalaninate (6).^{1b} Similar regioselectivity was observed with ferrocenylphosphine ligand 1b though 4a of opposite configuration was formed with lower stereoselectivity (entry 4). Other phosphine ligands, DIOP,¹² BINAP,¹³ and chiraphos,¹⁴ all gave the amination products with much lower regio- or stereoselectivity (entries 5-7).

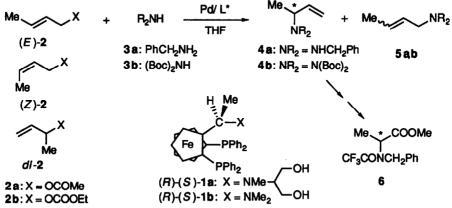
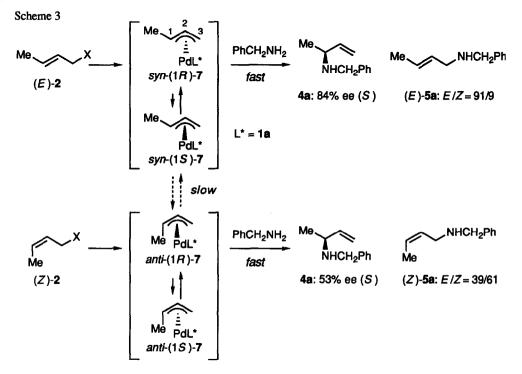



Table 1. Asymmetric Allylic Amination of (E)-2-Butenyl Acetate ((E)-2a) and Related Compounds in the presence of Chiral Phosphine-Palladium Catalysts,^a

entry	allylic substrate	amine	chiral ligand	temp (°C)	time (h)	yield ^b (%) of 4 + 5	ratio ^c 4/5	% ee 4 ^d (config)	5d E/Z
1	(E)- 2a	3a	(R)-(S)- 1a	0	90	87	97/3	84 (S)	91/9
2	(E)- 2a	3a	(R)-(S)-1a	25	21	75	93/7	69 (S)	89/11
3	(E)- 2b	3a	(R)-(S)-1a	0	91	70	98/2	80 (S)	88/12
4	(E)- 2a	3a	(R)-(S)-1b	0	86	73	95/5	49 (R)	80/20
5	(E)- 2a	3a	(+)-DIOP	0	87	83	78/22	7 (S)	88/12
6	(E)- 2a	3a	(+)-BINAP	25	44	58	62/38	41 (S)	94/6
7	(E)- 2a	3a	(-)-chiraphos	25	44	68	81/19	9 (R)	86/14
8	(Z)-2a	3a	(R)-(S)-1a	0	112	76	95/5	53 (S)	39/61
9	(Z)-2a	3a	(R)-(S)-1b	0	43	67	94/6	51 (R)	72/28
10	dl-2a	3a	(R)-(S)-1a	0	66	87	96/4	64 (S)	64/30
11	<i>dl-</i> 2a	3a	(R)-(S)-1b	0	20	62	93/7	53 (R)	77/23
12	(E)- 2b	3b	(R)-(S)- 1a	0	260	37	85/15	61 (S)	81/19
13	(Z)- 2b	3b	(R)-(S)-1a	0	260	30	88/12	63 (S)	81/19

^{*a*} A mixture of Pd₂(dba)₃·CHCl₃ (0.0075 mmol), a chiral phosphine ligand (0.03 mmol), butenyl acetate or carbonate 2 (0.50 mmol), and amine 3 (1.25 mmol) in 2.5 mL of dry THF was stirred at a given temperature. For a typical procedure, see text. ^{*b*} Isolated yield by preparative TLC. ^{*c*} Determined by GLC analysis. ^{*d*} Determined by HPLC analysis.

The amination of (Z)-2-butenyl acetate ((Z)-2a) with the (R)-(S)-1a/Pd catalyst gave 4a of lower enantiomeric purity (53% ee) though the regioselectivity was still high (4a/5a) = 95/5) (entry 8). It should be noted that E or Z geometry of the double bond in the starting acetate was retained in the linear product 5a. Thus, the E/Z ratios of 5a formed in the amination of (E)-2a and (Z)-2a were 91/9 and 39/61, respectively (entries 1 and 8). The allylic amination of 2a must proceed via π -(1-methylallyl)palladium(II) intermediates 7 which can undergo syn-anti isomerization (syn-7 and anti-7) and epimerization ((1R)-7 and (1S)-7) by the σ - π - σ mechanism.⁶ The stereochemical results obtained for the amination of (E)- and (Z)-2a indicate that the nucleophilic attack of benzylamine takes place before an equilibration of the syn-anti isomerization is reached (Scheme 3).

The epimerization of the π -allylpalladium complexes is fast compared with the nucleophilic attack, which may be suggested by the result that the reaction of *dl*-2a gave optically active 4a (entry 10). The % ee value (64% ee) and *E/Z* ratio (64/36) are between those observed with (*E*)-2a and (*Z*)-2a. The reaction of a series of the isomeric butenyl acetates (*E*)-, (*Z*)-, and *dl*-2a with benzylamine in the presence of 1b as a ligand resulted in the formation of the amination products 4a and 5a with essentially the same regio- and stereochemistry (entries 4, 9, and 11), demonstrating that the benzylamine attacked the π -allylpalladium intermediates after its *syn-anti* isomerization was completed. Hydroxy groups on the side chain of ferrocenylphosphine ligand 1a are supposed to accelerate the nucleophilic attack of benzylamine or to retard the *syn-anti* isomerization of the π -allylpalladium intermediates.

Use of di-*tert*-butyl iminodicarbonate $(3b)^{15}$ as a nucleophile for the reaction of (*E*)- and (*Z*)-2-butenyl carbonates 2b in the presence of 1a/Pd catalyst gave amination products $4b^{16}$ and 5b with lower regio- and

stereoselectivity (entries 12 and 13). The same stereochemical results obtained with (E)- and (Z)-2b indicate that the nucleophilc attack of 3b is slow compared with the isomerizations of 7.

A typical procedure is given for entry 1 in Table 1. To an orange solution of palladium catalyst prepared by mixing 7.8 mg (0.0075 mmol) of Pd₂(dba)₃·CHCl₃ and 20.6 mg (0.03 mmol) of ferrocenylphosphine 1a in 2.5 mL of dry THF was added 57.1 mg (0.50 mmol) of butenyl acetate (*E*)-2a, and the mixture was stirred at room temperature for 20 min. Benzylamine (3a) (134 mg, 1.25 mmol) was added at 0 °C, and the mixture was stirred at 0 °C for 90 h. Hydrolysis with 15% NaOH followed by GLC analysis showed the amination products, 3-benzylamino-1-butene (4a) and 1-benzylamino-2-butene (5a) were formed in a ratio of 97/3. Extraction with ether followed by preparative TLC on silica gel (hexane/ethyl acetate =1/1) gave 68.3 mg (85%) of 4a and 2.1 mg (3%) of 5a. The enantiomeric purity of 4a and *E/Z* ratio of 5a were determined to be 84% ee and 91/9, respectively, by HPLC analysis of 3,5-dinitrophenylureas, prepared by treatment of amines 4a and 5a with ArNCO in chloroform, with a chiral stationary phase column (Sumitomo Chemical Co., Sumipax OA-4500, hexane/dichloroethane/ethanol = 50/15/1).

We thank the Akiyama Foundation for partial financial support of this work.

REFERENCES AND NOTES

- 1 (a) Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. *Tetrahedron Lett.* 1986, 27, 191. (b) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301.
- (a) Hayashi, T.; Yamamoto, A.; Ito, Y. J. Chem. Soc., Chem. Commun. 1986, 1090. (b) Hayashi, T.;
 Yamamoto, A.; Ito, Y. Chem. Lett. 1987, 177.
- 3 (a) Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1988, 29, 99. (b) Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1988, 29, 669.
- 4 Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1989, 30, 375.
- 5 Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113.
- 6 For a review: Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
- 7 Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2033.
- 8 Trost, B. M.; Murphy, D. J. Organometallics 1985, 4, 1143.
- 9 (a) Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konishi, M.; Yamamoto, K.; Kumada, M. Bull. Chem. Soc. Jpn. 1980, 53, 1138. (b) Hayashi, T.; Kumada, M. Acc. Chem. Res. 1982, 15, 395, and references cited therein.
- 10 The regioselectivity (97/3) is one of the highest in the allylic substitution reactions of butenyl esters. For a discussion concerning the regioselectivity, see ref 6 and references cited therein.
- 11 Trifluoroacetylation ((CF₃CO)₂O/Et₃N/DMAP/CH₂Cl₂) of (+)-4 ([α]²⁰_D +4.0° (c 1.3, chloroform)) gave 87% yield of 3-(N-trifluoroacetylbenzylamino)-1-butene ([α]²⁰_D -43.9° (c 1.4, chloroform)), which was subjected to oxidation (KMnO₄/NaIO₄) and esterification (CH₂N₂) to give 40% yield of (-)-(S)-6 ([α]²⁰_D -23.1° (c 1.6, chloroform)) (ref 1b).
- 12 Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.
- 13 Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
- 14 Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6262.
- 15 Use of lithium or sodium salt of di-tert-butyl iminodicarbonate (3b) as a nucleophile has been reported: Connell, R. D.; Rein, T.; Åkermark, B.; Helquist, P. J. Org. Chem. 1988, 53, 3845.
- 16 The enantiomeric purity and configuration was determined by converting **4b** into **4a** by acidic removal of Boc group (CF₃COOH/HCl/THF) followed by *N*-benzylation (PhCH₂Cl/Et₃N/CH₂Cl₂).