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ABSTRACT: A palladium-catalyzed C(sp3)–H carbonylation of alkylated aryl triflates or bromides under 1 atm of CO has been 
developed, in which no directing group or oxidant were required. The essence of 
this reaction is the combination of appropriate NHC ligands with palladium to 
facilitate the formation of five-membered cyclopalladium intermediate. 
Mechanism studies suggest that the insertion of carbon monoxide into two five-
membered cyclopalladium species generated via palladium migration might be the 
crucial step of this transformation. This method offers an efficient solution for 
expedient construction of indanone cores, which are valuable synthons and 
pharmacophores ubiquitously found in numerous natural products. 

KEYWORDS: palladium, C–H activation, carbonylation, indanone, NHC ligand

Transition-metal-catalyzed C−H bond functionalization has 
emerged as a straightforward and efficient strategy for the 
synthesis of complex natural products and functional 
molecules, due to its step- and atom-economical manner 
induced by the direct transformation from ubiquitous C−H 
bonds.1 As one of the most important and readily available 
carbonylating sources, the insertion of carbon monoxide (CO) 
into organic molecules via direct C−H bond functionalization 
has been developed as an efficient method for incorporation of 
carbonyl group.2 While a variety of transition-metal-catalyzed 
carbonylations of C(sp2)–H bonds have been established, only 
few examples have been demonstrated on the C(sp3)–H 
carbonylation due to its high stability. Since Fujiwara’s 
pioneering work in 1989,3 direct carbonylation reactions of 
simple alkanes and toluenes have been established via Pd, Cu, 
or Rh-catalyzed alkyl and benzylic C−H activation (Scheme 
1a).4 However, such methods normally required high pressure 
of CO (10-50 atm), a large excess of substrates, and/or lack of 
regioselectivity, thus clearly hampering their application in 
organic synthesis. 

To solve the perennial problems of low reactivity and poor 
site selectivity in non-directed C(sp3)–H carbonylation,  
directing group strategy has been employed. The Yu group 
and the Chatani group have reported Pd and Ru-catalyzed β-
carbonylation of alkyl amides for synthesis of succinimides, 
respectively.5 Inspired by these results, a series of directing 
groups, including 8-aminoquinoline, oxalyl amide, secondary 
aliphatic amine and others, have been exploited by many 
research groups to facilitate the carbonylation of C(sp3)–H 
(Scheme 1b).6 However, these reactions require N-containing 
directing groups, which are also used as building blocks, fur-

Scheme 1. Transition-Metal-Catalyzed Carbonylation of 
C(sp3)−H Bonds
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Table 1. Pd-Catalyzed C(sp3)−H Carbonylation: 
Optimization of Conditionsa

Ph OTf

[Pd] (10 mol%)
ligand (20 mol%)

CsOPiv (2.0 equiv)
PhEt, CO (1 atm), 140 C Ph

Me Me

O1a 2a

Me Me
H

N N

R1

R3

R1

R3

R2 R2X

L1, R = H, R1 = R2 = iPr, R3 = H, X = Cl
L2, R = H, R1 = R2 = Et, R3 = H, X = Cl
L3, R = H, R1 = Et, R2 = Me, R3 = H, X = Cl
L4, R = H, R1 = R2 = Me, R3 = H, X= Cl
L5, R = H, R1 = R2 = R3 = Me, X = Cl

R R

L6, R,R = (CH2)4, R1 = R2 = R3 = Me, X = Br
L7, R = Me, R1 = R2 = R3 = Me, X = Cl
L8, R = Me, R1 = R2 = Me, R3 = OMe, X = Cl

Entry [Pd] Ligand Yield (%)b

1 Pd(OAc)2 PPh3 0

2 Pd(OAc)2 P(o-tol)3 0

3 Pd(OAc)2 PCy3 trace

4 Pd(OAc)2 (tBu3PH)BF4 0

5 Pd(OAc)2 L1 5

6 Pd(OAc)2 L2 23

7 Pd(OAc)2 L3 41

8 Pd(OAc)2 L4 43

9 Pd(OAc)2 L5 49

10 Pd(acac)2 L5 62

11 PdCl2 L5 52

12 Pd(OPiv)2 L5 66

13 Pd(TFA)2 L5 69

14 Pd(TFA)2 L6 74

15 Pd(TFA)2 L7 76

16 Pd(TFA)2 L8 70

17c Pd(TFA)2 L7 82 (72)

aReaction conditions: 1a (0.2 mmol, 1.0 equiv), [Pd] (10 mol%), 
ligand (20 mol%), CsOPiv (2.0 equiv), PhEt (1.5 mL), CO (1 
atm), 140 °C, 24 h. bYields were determined by GC using 
dodecane as an internal standard; number in parentheses was 
isolated yield. c[Pd] (15 mol%), ligand (30 mol%), 48 h.

nishing only cyclic amides or their derivatives. Besides, the 
addition of extra oxidants goes against the the atom-economy 
of such C–H functionalizations. As one part of our continuous 
efforts to develop novel methods via C–H activation,7, 6c we 
envision that Pd(0)-catalyzed C–H activation, also known as a 
redox-neutral process with high selectivity, could handle those 
problems. Our strategy relies on the use of oxidative addition 
of a carbon-leaving group bond to Pd(0) species to induce 
intramolecular C(sp3)−H activation8-9 and the subsequent 
insertion of CO into the in situ-formed cyclopalladium 
intermediate.

Herein, we described a palladium-catalyzed C(sp3)–H 
carbonylation of alkylated aryl triflates or halides under 1 atm 
of CO, in which no directing group or oxidant were required. 
The essence of this reaction is the combination of appropriate 
NHC ligands with palladium to facilitate the formation of five-
membered cyclopalladium intermediate. This method offers an 
efficient solution for the expedient synthesis of indanone 

cores, which can be use as valuable synthons and 
pharmacophores ubiquitously found in numerous natural 
products (Chart 1).10 

Our study commenced with t-butyl biphenyl triflate 1a as 
the pilot substrate in the presence of a catalytic amount of 
Pd(OAc)2 (10 mol%) in ethylbenzene under 1 atm of CO at 
140 °C (Table 1). A variety of phosphine ligands, which 
facilitated the formation of five-membered cyclopalladium,9 
failed to promote this transformation (entries 1-4). To our 
delight, NHC ligand L1 enabled the desired C(sp3)–H 
carbonylation to furnish 2a successfully, albeit with a pretty 
low yield (5%, entry 5). Stimulated by this result, a number of 
NHC ligands were synthesized and investigated in this 
reaction. With the decreasing of the steric hindrance of the 
NHC ligands (L2-L4), interestingly, the yield was gradually 
promoted to 43% (entries 6-8). Additionally, compared with 
L4, IMes•HCl (L5) was a more suitable ligand to facilitate this 
reaction (entry 9). Next, after careful screening of palladium 
sources (entries 10-13), Pd(TFA)2 was indicated as the optimal 
choice with 69% GC yield. To further improve the yield, 
further modifications of NHC ligands on the imidazole ring 
and aryl ring were next performed (entries 14-16). To our 
satisfaction, the examination showed that NHC ligand with 
dimethyl groups on the 4,5-position of imidazole ring 
(IMesMe•HCl, L7) gave the best result (76%, entry 15). 
However, the yields of 2a decreased when a more electron-
rich ligand (L8) was investigated, suggesting that a critical 
demand of both steric and electronic effects of the NHC ligand 
was required in this system (entry 16). Finally, by increasing 
the catalyst loading to 15 mol% and prolonging reaction time 
to 48 h, the isolated yield of 2a was improved to 72% (entry 
17).

With the optimized reaction conditions in hand, we next 
explored the scope of this C(sp3)–H carbonylation reaction. As 
shown in Table 2, a large number of aryl substrates were 
carbonylated smoothly, furnishing the corresponding indanone 
products 2 in medium to good yields. Notably, aryl triflates, 
nonaflates as well as bromides were all compatible with this 
catalytic reaction (2a, 2b). Impressively, aryl triflates installed 
with electron-withdrawing groups at the meta-position of aryl 
rings, including amides (2c-2e), ketones (2f, 2g), and esters 
(2h, 2i), showed high reactivity for this transformation. In 
contrast, aryl triflates with electron-donating groups gave 
relatively lower yields (2j, 2k), which was consistent with the 
proposal that the cleavage of C(sp3)–H bond underwent 
through the concerted metalation-deprotonation (CMD) 
mechanism.11 Moreover, the subjection of aryl triflate 1m into 
the reaction system furnished indanone 2m as the sole product, 
indicating that the cleavage of methyl C(sp3)–H was more 
favorable over the methylene C(sp3)–H and the formation of a 
five-membered cyclopalladium was prefered over a six-
membered ring. Yet intriguingly, 2-t-butyl-6-methylphenyl 
triflate (1n) was carbonylated only at the most steric hindered 
position of the aryl ring without any migration product 
(vide infra). More interestingly, julolidine derivate 1p was also 
well tolerated in this reaction, affording tetracyclic indanone 
2p in an acceptable yield. 

To further investigate the scope of aryl triflates in this 
carbonylation system, para-substituted aryl triflates were next 
examined. As expected, the desired indanones were isolated as 
mixtures of regioisomers for the carbonylation occurred at 
either 1- or 3-positions of the aryl rings, which clearly 
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indicated a palladium migration was involved via a ring-
opening C(sp2)–H activation of the cyclopalladium 
intermediate. To 
Table 2. Pd-Catalyzed C(sp3)–H Carbonylationa

Me Me

O

X = OTf, 65%
X = ONf, 62%
X = Br, 55%

Me Me

O

N

O
2c, 77%b,c

Me Me

O
Ph

X = OTf, 72%b,c

X = ONf, 68%b,c

2a 2b

Me Me

O

N

O

O

2d, 73%b,c

Me Me

O

N

O
2e, 74%b,c

Me Me

O
Ac

2f, 53%b

Me Me

O

Ph

O
2g, 71%b

Me Me

O
MeO2C

2h, 61%

Me Me

O
nBuO2C

2i, 70%b,c

Me Me

O
Me

2j, 50%

Me Me

O
AcHN

2k, 40%b,c

Me CO2Me

O
2l, X = Br, 38%
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O
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Me Me

O
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Me Me
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Me
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Me
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O
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3 Me Me

O

Me
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3 Me Me

O
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3 Me Me

O
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Me Me

O

MeO2C

1

3 Me Me

O
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O

Me
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2- and 3-substituted substrates:

4-substituted substrates

Me

O

2t, 53%

2s, 48%

2v, 82% (1-:3- = 1:4)b,c

2w, 62% (1-:3- = 1:1.6)b 2x, 63% (1-:3- = 1:1)b 2y, 43%b,c

2u, 62%b,c

R1

Me R2

X

Pd(TFA)2 (10 mol%)

CO (1 atm), CsOPiv (2 equiv) R1

Me R2

O

Me

2q, 66% (1-:3- = 1.3:1)

H

1 2

IMesMe•HCl (20 mol%)

PhEt, 140 oC

aReaction Conditions: 1 (0.2 mmol, 1.0 equiv), Pd(TFA)2 (10 
mol%), IMesMe•HCl (20 mol%), CsOPiv (2.0 equiv), PhEt (1.5 
mL), CO (1 atm), 140 °C, 24 h; unless otherwise noted, X = OTf. 
bPd(TFA)2 (15 mol%), IMesMe•HCl (30 mol%). c48 h.

our interest, as shown in Table 2, both steric and electronic 
effects had subtle influence on our catalytic system. For 
example, while indanone 2q was afforded in 66% yield as a 
mixture of two regioisomers in 1.3:1 ratio, 2r was obtained at 
a slightly higher ratio of 1.6:1in the reaction of 1r. From the 
collective results above, they indicated that a bulkier para-
substituent on the aryl rings might suppress the palladium 
migration of cyclopalladium intermediate. To verify this 
speculation, aryl triflates installed with large steric hindrance 
groups at the para-position were tested in this catalytic 
reaction, which gave the less steric hindered products as the 
only products (2s and 2t). Meanwhile, the isolation of 2u as 

the sole product showed phenyl ring was also bulky enough to 
control the regioselectivity. Gratifyingly, halogen substituents 
such as fluoro (1v) and chloro (1w) were also well tolerated, 
while furnishing the migration products in majority. 
Importantly, while aryl triflate installed with electron-donating 
group such as methoxy (1x) gave two regioisomers in a ratio 
of 1:1, triflate with electron-withdrawing substituent afforded 
indanone 2y as as the single regioisomer. These results 
indicated that the electronic effect also played a key role in 
controlling in controlling the regioselectivity of this 
transformation as well. 

To demonstrate the synthetic potential of this novel method, 
further transformations of the produced indanone were next 
elucidated (Scheme 2). According to the literatures,12 the 
nitration of 2b with fresh prepared nitric acid followed by Pd-
catalyzed hydrogenation could afford aniline 3 in 97% yield 
(Scheme 2a). Meanwhile, indanone 2b could be brominated at 
the α-carbon of carbonyl group using N(n-Bu)4Br3 as a mild 
brominating reagent (4, Scheme 2b). Next, after oximation of 
2b with hydroxylamine, a Beckmann rearrangement of the 
corresponding ketoxime was performed to afford lactam 5 in 
85% yield. Additionally, a classical Baeyer-Villiger oxidation 
of ketone 2b by m-CPBA at room temperature could furnish 
lactone 6 in 85% yield. Finally, a Wittig reaction of 2b also 
afford exocyclic alkene 7 in 71% yield.
Scheme 2. Synthetic Transformations of Indonane 2b
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a) KNO3, H2SO4, -5 °C; Pd/C, H2, MeOH; b) (n-Bu)4NBr3, 
CHCl3, 0 °C; c) NH2OH•HCl, NaOAc, EtOH, reflux; CBr4, PPh3, 
toluene, 80 °C; d) m-CPBA, CH2Cl2, rt; e) PPh3PCH3Br, tBuOK, 
THF, rt.

 Scheme 3. Mechanistic Experiments

Page 3 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ph Ph
COCl standard conditions

Ph
Ph

O

COCl

Me Me

O

Br

CO2Me

Br

D3C CD3

H3C CO2Me

O

D3C CO2Me

O

O

H/D45% D

Pd
Cl Me

Me

Me Me

O

Me Me

O

8 9, 0%

10 2b, 0%

Me

(1)

(2)

D3C CH3

CO2Me

11 38% (12a:12b = 2.5:1)

+

12a 12b

13 14, 40%

(3)

(4)

15 2b, 31%

16 2b, 50%

(5)

(6)

IMesMe•HCl (2.0 equiv)
CsOPiv (5.0 equiv)
PhEt, CO (1 atm)

140 C, 12 h

IMesMe•HCl (2.0 equiv)
CsOPiv (5.0 equiv)
PhEt, CO (1 atm)

140 C, 12 h

standard conditions

CO2Me
standard conditions

CD3

Pd
Me

Me

Me Me

kH/kD = 2.5

standard conditions

Scheme 4. Proposed Mechanism

Pd

Me
MeR

Pd

R

Me

Pd

Me Me

O

R

Pd

Me Me

O
R LL

L

L

Me

Me

Pd

R
Me

Me

Pd

R

L

Me

OPiv

H

Pd(0)L

OTf

R

Pd

Me Me

L OPiv

L

Me

Me

OTf

R
Me

CsOPiv

CsOTf

Me Me

O

R
Me Me

OR

+

2 2'

A

B

D

C

E

G F

Me

R
Pd

Me Me

O

CO

Me

Me
Pd

R
Me

I
O

R

Pd

Me Me

O
L

1

L

OPiv

Me Me

O

R

2

L

OPiv

PivOH

-PivOH

+PivOH

-PivOH

+PivOH

-PivOH+PivOH

CO

PivOH

H

J

CO

path a

path b
path c

To gain some insights into the mechanism of this reaction, a 
series of control experiments were next carried out. Firstly, the 
subjection of acid chloride 8 or 10 into the standard conditions 
gave none of the desired product, which indicated that the 
carbonylation step might happen after the C−H activation step 
(Eq. 1-2, Scheme 3).13 Next, the reaction of partially 
deuterated aryltriflate 11 under the optimized conditions 
allowed the determination of a primary intramolecular isotope 
effect of 2.5 (Eq. 3, Scheme 3), which indicated that the 
cleavage of C–H bond might be the rate-determining step. 
Furthermore, the ortho-deuterated product 14 was isolated 
when 13 was used as the deuterated substrate, which 
demonstrated a palladium migration might be involved in the 
catalytic cycle (Eq. 4, Scheme 3). Finally, the reaction of the 

putative palladium species 15 and its cyclopalladium 
intermediate 16 under the standard conditions could furnished 
the target indanone 2b in 31% yield and 50% yield, 
respectively (Eq. 5-6, Scheme 3).14 Both results suggested that 
the five-membered cyclopalladium was generated via C–H 
bond cleavage before the insertion of carbon monoxide.

On the basis of collective results and previous reports,9 a 
plausible mechanism of Pd-catalyzed C(sp3)–H activation/CO 
insertion was described as Scheme 4. Initially, oxidative 
addition of aryl triflate 1 to Pd(0) forms cationic aryl 
palladium complex A, which transformed to palladium 
complex B quickly via ligand exchange. The palladium 
complex B might be inserted by CO, followed by C(sp3)–H 
bond activation to give product 2 (path a). However, the 
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detection of migration products (2q, 2r, 2v-x, Table 2) could 
exclude this assumption. On the contrary, intramolecular 
C(sp3)−H activation of Pd(II) species B will generate 
cyclopalladium C before the insertion of CO. While 
cyclopalladium C might coexist in equilibrium with E via the 
formation of the alkyl palladium intermediate D, The carbonyl 
palladium complexes F and G were then afforded by the 
subsequent insertion of CO (path b).15 The final reductive 
elimination from F and G furnishes the indanone products 2 
and 2’, and regenerates Pd(0) catalyst. On the other hand, the 
proposal described in path c that alkyl palladium intermediate 
D might be inserted by CO could also be excluded by our 
control experiment (eq. 1, Scheme 3).

In conclusion, we have developed a novel palladium-
catalyzed C(sp3)–H carbonylation of alkylated aryl triflates or 
bromides under 1 atm of CO. The combination of appropriate 
NHC ligands with palladium facilitates this transformation 
successfully. Mechanism studies suggest that the insertion of 
carbon monoxide into two five-membered cyclopalladium 
species, which are generated via palladium migration, is the 
crucial step of this transformation. This method offers a 
solution for construction of all carbon indanones, and paves an 
efficient way for synthesizing bioactive compounds containing 
such valuable synthons and pharmacophores. Further 
exploration of the detailed mechanism and application of this 
strategy to synthesize bioactive molecules are still ongoing in 
our laboratory.
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