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Octasubstituted phthalocyanines bearing bulky (cyclopentyl)methyl- and (cyclohexyl)methyl-substitu-
ents in non-peripheral positions are prepared and characterised. The synthesis of the precursor phthalo-
nitriles is achieved through nickel-catalysed cross-coupling employing alkylzinc reagents. In the case of
the (cyclopentyl)methyl derivative the formal precursor is 5-hexenyl bromide which yields the cyclised
material exclusively on formation of the zinc reagent and subsequent cross-coupling.
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Phthalocyanines are important molecular materials because of
the potential for such molecules to form the functional component
of optoelectronic devices.1,2 Their use in such applications typically
requires a combination of molecular (optical absorption/band gap,
redox, etc.) and bulk (solubility, processability, self-assembly,
mesophase formation, etc.) properties. For this reason, a large
number of phthalocyanine derivatives have been prepared. Such
modifications can focus on a combination of variation of the (or-
ganic) core structure (e.g. introduction of substituents to change
absorption and/or solubility properties) and the central metal ion
(more than 70 elements can be introduced) Figure 1.

One drawback to using phthalocyanines in cheap, mass produc-
tion devices is the difficulty in applying them through conventional
solution phase processes such as inkjet or screen printing. Simple
phthalocyanines have poor solubility and tend to be applied
through high-vacuum evaporation techniques. The solubility issue
has been overcome through preparation of substituted derivatives
and high solubilities can be achieved.3 We have paid particular
attention to phthalocyanines substituted in the so-called non-
peripheral positions4 and introduction of eight alkyl groups ren-
ders the phthalocyanines, and their metallated derivatives, freely
soluble in most organic solvents. However, at moderate-high con-
centrations the macrocycles self-assemble into higher aggregates.5

A potential strategy to overcome this (face-to-face) aggregation is
to increase the steric bulk of the substituent close to the phthalo-
cyanine core. Such perturbation also has the potential to distort the
phthalocyanine nucleus from planarity and induce useful spectral
ll rights reserved.
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changes.6 In this Letter we report two such derivatives where
(cycloalkyl)methyl substituents are introduced onto the non-
peripheral sites of the phthalocyanine core.

Our two target molecules are shown in Figure 2 and bear,
respectively, eight (cyclopentyl)methyl- and (cyclohexyl)methyl
substituents. As with most phthalocyanine syntheses the main
challenge rests with the preparation of appropriate phthalonitrile
precursors. 3,6-Dialkylphthalonitriles are prepared routinely in
our laboratories and a number of synthetic routes are available.7

Our preferred route (Scheme 1) employs Negishi coupling between
phthalonitrile ditriflate 3 and an alkylzinc halide, and we reasoned
that this procedure could be modified to achieve the synthesis of
(cyclohexyl)methyl-derivative 1.

(Cyclohexyl)methyl bromide is readily available but, in our
hands, its conversion into the corresponding alkylzinc reagent
(using activated zinc dust) proved inefficient and capricious. Con-
version into the corresponding iodide (Finkelstein reaction using
sodium iodide) avoided this problem and permitted smooth forma-
>70 elements

Figure 1. Phthalocyanine and simple sites for modification.
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Scheme 1. Synthesis of non-peripherally substituted octaalkyl phthalocyanines.
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Scheme 3. Reaction of 5-hexenyl halides with zinc.
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Scheme 4. Synthesis of 3,6-bis[(cyclopentyl)methyl]phthalonitrile 6 from com-
mercial ‘5-hexenylzinc bromide’.
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Figure 2. Target phthalocyanines.
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tion of (cyclohexyl)methylzinc iodide. The zinc reagent coupled
smoothly with ditriflate 3, despite its steric demand, to give the
dialkylphthalonitrile 48 (Scheme 2).

Synthesis of (cyclopentyl)methyl derivative 6 by a similar route
was less straightforward because the corresponding iodide/bro-
mide was not readily available. However, a survey of the literature
revealed that formation of the zinc reagent from 5-hexenyl iodide/
bromide leads to ring closure to form varying proportions of the re-
quired (cyclopentyl)methylzinc halide. Reports are, however,
inconsistent. In the case of 5-hexenyl bromide (activated zinc,
THF) Rieke9 reports cyclisation of only ca. 20% and suggests that
the cyclisation occurs during formation of the zinc reagent. In con-
trast, Marek and Normant10 reported exclusive cyclisation when
the zinc reagent was prepared from 5-hexenyl iodide using zinc
in DMF at 45 �C (Scheme 3).

For our synthesis, where two couplings were required, exclusive
formation of (cyclopentyl)methylzinc halide was clearly required
to prevent formation of a complex mixture of products. A model
coupling reaction was therefore performed between 4-bromotolu-
ene and commercial11 5-hexenylzinc bromide under the conditions
employed in our typical phthalonitrile syntheses (Scheme 4).
Somewhat surprisingly, analysis of the crude product revealed that
the only cross-coupled product was the (cyclopentyl)methyl deriv-
ative 5 (it shows a distinctive doublet at d 2.60). Use of the same
commercial reagent led therefore to smooth formation of 3,6-
bis(cyclopentyl)methylphthalonitrile 68 without the need for fur-
ther refinement of reaction conditions or protocol.
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Scheme 2. Synthesis of 3,6-bis[(cyclohexyl)methyl]phthalonitrile 4.
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Scheme 5. Synthesis of phthalocyanines 1 and 2.
The phthalonitriles were cyclised to the corresponding phthalo-
cyanines using the standard conditions of lithium/refluxing penta-
nol (Scheme 5). Work-up with acetic acid afforded the metal-free
phthalocyanines which were purified by column chromatography.8

Isolated yields of pure material were consistently around 20%, and
typical for such phthalocyanine syntheses in our experience and
independent of scale, indicating that the steric demand had only
limited impact on the cyclisation reaction efficiency. UV–vis spec-
tra showed no evidence of broadening due to aggregation but were



Figure 3. X-ray crystal structure of 2.
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red-shifted compared to straight-chain octaalkylphthalocyanines
(kmax 2 = 735 nm, 1 = 740 nm). Such spectral shifts are characteris-
tic of twisting in the phthalocyanine core.6 Crystals suitable for X-
ray structure determination were obtained for 2 (Fig. 3) and devi-
ation from planarity (a twist of ca. 12�) was clearly observed in the
solid state.12

In conclusion, we have reported the synthesis of non-periph-
erally substituted phthalocyanines bearing eight (cyclopentyl)-
methyl- and (cyclohexyl)methyl-substituents. The phthalonitrile
precursors were prepared from the corresponding zinc reagent
although, in the case of (cyclopentyl)methylzinc bromide, the
reagent was formally accessed from 5-cyclohexenyl bromide via
cyclisation. The phthalocyanines show red-shifted spectra indi-
cating that the steric demand of the substituents causes a twist
in the phthalocyanine core. The X-ray crystal structure of 2
clearly shows this twist in the solid state. UV–vis and 1H NMR
spectra show sharp peaks characteristic of non-aggregated
species.
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