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ABSTRACT: A novel asymmetric 6-endo aminoacetoxylation of 

unactivated alkenes by palladium catalysis, which yields chiral β-

acetoxylated piperidines with excellent chemo-, regio- and 

enantioselectivities under very mild reaction conditions, has been 

established herein by employing a new designed pyridine-

oxazoline (Pyox) ligand. Importantly, introducing a sterically 

bulky group into the C-6 position of Pyox is crucial to enhance 

the reactivity of the amino-acetoxylation of alkenes.  

Enantiomer-enriched nitrogen-containing heterocycles, such as 3-

hydroxypiperidines, are frequently found in pharmaceuticals, 

agrochemicals and natural products. 1  For instance, Jervine, 

a steroidal alkaloid, isolated from the Veratrum plant genus; 2  

Benidipine, a dihydropyridine calcium channel blocker for curing 

hypertension (Scheme 1a). 3  Considerable efforts have been 

therefore directed toward synthesis of chiral heterocycles, and 

many methods have been developed.4 Among them, asymmetric 

palladium-catalyzed intramolecular oxidative amination of 

alkenes is considered as the one of most prevalent strategy, which 

however still remains a big challenge in organic synthesis.5 So far, 

some of such transformations have been achieved by the groups 

of Yang,6 Zhang,7 Stahl, 8 Michael9 and us,10 which underwent 5-

exo cyclizations to provide five-membered heterocycles with high 

enantioselectivities. However, to the best of our knowledge, there 

have never been any examples of enantioselective Pd-catalyzed 6-

endo oxidative amination of alkenes for the synthesis of chiral 

piperidines reported in documents to date. 11  Herein, we 

communicate this asymmetric palladium-catalyzed 6-endo 

oxidative aminoacetoxylation of unactivated alkenes, which 

provides an easy access to enantiomer-enriched 3-acetoxy 

piperidines. Notably, we found that a novel sterically bulky 

pyridinyl-oxazoline (Pyox) is very essential to achieve a highly 

efficient reaction with excellent regio- and enantioselectivities 

(Scheme 1b). 

For C-heteroatom bonds that can be easily generated through 

reductive elimination at a Pd(IV) center, a series of palladium-

catalyzed difunctionalizations of alkenes, allowing the efficient 

synthesis of nitrogen-containing heterocycles, have been 

developed. 12  In recent years, our group disclosed a series of 

palladium-catalyzed intramolecular oxidative amination of 

alkenes, 13  most of which underwent 6-endo aminocyclizations. 

For instance, Pd-catalyzed aminoacetoxylation of unactivated 

alkenes provided an access to the straightforward and efficient  

 
Scheme 1. Enantioselective Pd(II)-catalyzed oxidative amination 

of unactivated alkenes (SE = steric effect). 
 

synthesis of structurally diverse 3-acetoxylated piperidines with 

high regioselectivities.13e Thus, we reasoned that, if a chiral ligand 

could be explored to carry out the palladium-catalyzed reaction, 

the asymmetric 6-endo aminoacetoxylation of unactivated alkenes 

giving the chiral 3-acetoxylated piperidines might be realized 

(Scheme 1b). Our initial investigations started with the commonly 

used nitrogen-based chiral ligands, which however significantly 

inhibited the reaction and resulted in poor yields and low 

enantioselectivities (For details, see SI). Then, we turned our 

attention to exploring some new chiral ligands that would be 

helpful to enhance both reactivities and enantioselectivities. 
 

 

Reported examples of the oxidative amination reaction 

revealed that Pyox/Qox was a privileged ligand;5-10 however, the 

ligand HPyox had a detrimental effect on the aminoacetoxylation 

reaction of 1a, which was possibly attributed to the strong 
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electron-donator (HPyox) to Pd(OAc)2, reducing the Lewis acidity 

of the palladium catalyst (eq. 1).14 To enhance the reactivity of the 

palladium catalyst, we hypothesized that, if a sterically congested 

substituent (R'') was introduced into the C-6 position of the Pyox 

ligand, the sterically bulky R'' group makes the interaction 

between the pyridinyl group and the palladium center weaker, 

thus increasing the PyN-Pd bond length (Scheme 1c).6c,8b The 

ligated palladium catalyst will become more electronphilic, which 

facilitates the activation of olefins. 15,16.  
 

Table 1. Ligand screening.a,b 

 
 

With these hypotheses in mind, the reported ligands, MePyox and 

Qox, were examined for the reaction of 1a. As shown in Table 1a, 

to our delight, the two ligands exhibited much better reactivities 

than HPyox and gave the desired product 2a in both 50% yields 

with 83% and 85% ee, respectively. Unfortunately, further 

optimizing reaction conditions failed to obtain better results and 

the substrate 1a was completely consumed. Inspired by these 

results, several new Pyox ligands bearing bulky substituents (R’’) 

at the C-6 position were synthesized and tested. Pleasingly, the 

ligands BnPyox and iPrPyox gave the aminoacetoxylated product 

2a in slightly better yields (52% and 56%, respectively) with 

excellent enantioselectivities (91%). Notably, when the Pyox 

ligand was further modified by replacing the benzyl and isopropyl 

groups with the bulkier diphenylmethyl group, ligand L1 

exhibited much better reactivity and the product 2a was obtained 

in 83% yield with 92% ee. Furthermore, the yield of 2a could be 

further improved by adding HOAc, albeit with slightly diminished 

enantioselectivities.  

In order to clarify the ligand effects, the reaction rates were 

monitored with various of ligands. As shown in Figure 1a, 

reactions using the ligand with a bulky group (R'') exhibited a 

faster rate than that using the ligand bearing a small group and the 

order was listed as follows: L1 > iPrPyox > MePyox > HPyox. 

Meanwhile, the X-ray structure of (R''Pyox)PdCl2
17 illustrated the 

order of PyN-Pd(II) bond lengths as follows: (L1)PdCl2 (2.162 

Å) > (MePyox)PdCl2 (2.131 Å) 18  > (HPyox)PdCl2 (2.027 Å),18 

which is consistent with our hypotheses in Scheme 1c. These 

evidences revealed that increasing the size of the R'' group in the 
R''Pyox ligand could indeed weaken the PyN-Pd(II) bond, thus 

enhancing the electrophilicity of palladium catalyst for alkene 

activation. Moreover, the reaction rate could be accelerated by 

adding catalytic amounts of HOAc, but slowed down by adding 

Bu4NOAc (Figure 1b).19 We reasoned that the dissociation of an 

acetate from (L1)Pd(OAc)2 could be promoted by adding HOAc 

to generate a cationic palladium/olefin complex, reported by Stahl 

and coworkers, 20  which however could be diminished in the 

presence of excessive acetates (Scheme 1c).21 
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Figure 1. Ligand (a) and additive effects (b) on the reaction rate. 
 

With the optimal reaction conditions in hand, the substrate scope 

of this transformation was then examined. As revealed in Table 2, 

different nitrogen protecting groups were firstly surveyed. 

Substrates with various sulfonyl groups were suitable for the 

transformation (see SI) and the substrate 1b bearing the 2,4-

dimethylbenzenesulfonyl protecting group gave the product 2b in 

75% yield with the best enantioselectivity (up to 95%) (entries 1-

2). 22  However, the reaction of the substrate 1c with the Boc 

protecting group did not occur (entry 3). Then, we turned our 

attention to investigating various gem-disubstituted substrates. To 

our delight, the reactions of substrates bearing different alkyl 

groups, such as Et (1d), n-Pr (1e) and Bn (1f), afforded the 

corresponding products in good yields (68-82%) and excellent ee 

values (88-93%, entries 4-6). Notably, a slightly decreased 

enantioselectivity (80%) was obtained when using the substrate 

1g containing two ester moieties (entry 7). The reactions of 

substrates bearing gem-diaryl groups (1h-1m), into which acetic 

acid was added, afforded the desired products 2h-2m in good 

yields (65-86%) and excellent enantioselectivities (89-95%, 

entries 8-13). Furthermore, the reaction of substrates with various 

ring sizes also proceeded smoothly under the standard conditions 

to deliver the spiro-piperidine products 2n-2p and 2t in good 

yields (65-85%) and excellent ee values (90-92% for 2o-2p and 2t, 

83% for 2n, entries 14-16, 20). Substrates bearing heterocycles, 

such as cyclic ether (1q), amide (1r) and ketal (1s), were also 

suitable for the reaction, giving the enantiomer-enriched products 

2q-2s in good yields with good to excellent enantioselectivities 

(91% for 2q-2r, 82% for 2s, entries 17-19). Importantly, the 

substrate 1u bearing three allylic moieties also worked well to 

yield the olefin-containing 3-acetoxyl piperidine 2u in 48% yield 

with 95% ee (entry 21). It is noteworthy that a remarkable 

Thrope-Ingold effect was observed in this cyclization. Otherwise, 

poor regioselectivity will be obtained. For example, the reaction 

of the substrate 1v without any additional substituents on the 

carbon chain gave both the 6-endo and 5-exo products 2v and 3v 

in 50% and 34% yields with excellent enantioselectivities (90%, 

entry 22). Meanwhile, a similar result was also obtained for the 

substrate 1w (entry 23). Moreover, 1,1- and 1,2-disbstituted olefin 

substrates were ineffective for this enantioselective cyclization 

reaction.  To demonstrate the preparative utility of this 

methodology, our current reaction could be performed on a 5 

mmol scale without loss in reaction efficiency (entry 8). The 

absolute configuration of the products (R)-2a and (R)-2f were 

unambiguously established by X-ray analysis (Figure 2).  

Next, we investigated the desymmetrization of diene substrates 4a 

and 4b. The reaction of 4a under standard conditions delivered the 

two diastereoisomers cis-5a and trans-5a with excellent 

regioselectivities (>20:1) and enantioselectivities (88% and 95% 

respectively), but poor diastereoselectivities (2.5:1, Scheme 2a). 

Interestingly, the desymmetrization of the substrate 4b bearing the 

free hydroxyl group furnished the 6-endo product (3S,5R)-5b 

in62% yield with >20:1 dr ratio and 98% ee (Scheme 2b).23 These 

results indicated that the hydroxyl group is critical to the success 
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Table 2. Substrate scope.a 

 
Figure 2. X-ray structure of the products 2a (left) and 2f (right) 
  

 
Scheme 2. The desymmetric/asymmetric aminoacetoxylation. 

of the desymmetrization, which might be attributed to its 

coordination to the palladium catalyst.  

In addition, the product 2h could be selectively deprotected under 

different reaction conditions, giving the 3-hydroxy-piperidines 6 

and 7 in excellent yields without the loss of ee (eq. 2). 
  

 
 

To gain some insight into the reaction mechanism, the 

stereochemistry of the reaction was surveyed by employing the 

deuterium-labeling substrate trans-1a-d1. Similar to the previous 

results, a single isomer trans-2a-d1 was obtained, indicating that 

the stereoselective trans-aminopalladation led to an intermediate 

int-I and reductive elimination at a Pd (IV) center in int-II 

produced the C-OAc bond with stereo-retention (Scheme 3a).24 

Therefore, the 6-endo aminopalladation process should be an 

enantioselectivity-determining step. 

 

Scheme 3. Stereochemistry and chiral model of the reaction. 

To elucidate the origins of enantioselective aminopalladation 

step, the complex (L1)PdCl2 was synthesized and determined by 

the X-ray crystallography (Scheme 3b). Steric repulsion between 

the phenyl group in L1 and tosylamide in substrate caused an 

unfavored 6-endo-aminopalladation of model B, and the favored 

trans-aminopalladation of model A generated a chiral 

intermediate [(R)-int-I] containing C-N bond with high 

enantioselectivity, which affords the chiral product (R)-2a via a 

sequential oxidation and reductive elimination (Scheme 3c).25 

In conclusion, we have developed a novel enantioselective Pd-

catalyzed 6-endo aminoacetoxylation of unactivated alkenes, 

providing an easy access to structurally diverse 3-acetoxylated 

piperidines with excellent regio- and enantioselectivities. 

Moreover, we found that introducing a sterically bulky group at 

the C-6 position of Pyox is crucial to enhance the reactivity of 

palladium catalysts as well as enantioselectivities for the 

aminoacetoxylated products. 
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