
An Improved Synthesis of 2-Substituted-3-furoic Acids Leading to an Intramolecular Diels-Alder Reaction Between a Dienophile and Furan Diene Both Containing an Electron Withdrawing Group

Shuyuan Yu, Giovanna Beese and Brian A. Keay*

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

An improved preparation of various 2-substituted-3-furoic acids by lithiation of 2-methyl-3-furoic acid with 2.0 equiv. of butyllithium, and a successful intramolecular Diels-Alder reaction using 0.1 equiv. of methylaluminium dichloride between a dienophile and furan diene, which are both substituted with an electron withdrawing moiety, are described.

Avarol 1 (Scheme 1) is a *trans*-clerodane diterpenoid which has been isolated from the marine sponge *Disidea avara*¹ and

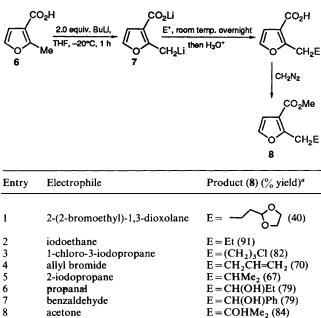
shown to possess potent anti-HIV effect in vitro² by inhibition of the t-RNA UAG-termination codon supressor.³ Although avarol has been synthesized once,4 and many synthetic approaches towards other trans-clerodanes have been reported,⁵ there is a need for a flexible synthetic pathway towards the synthesis of avarol to allow for the preparation of analogues for structure-activity studies. Our interest in the intramolecular Diels-Alder reaction of the furan diene⁶ (IMDAF) and nucleophilic oxygen-bridge ring-opening reactions of the resultant oxatricyclo adducts⁷ led us to retrosynthesise avarol to bridged adduct 2 (Scheme 1), which should be accessible from the IMDAF precursor 3. The synthesis of compound 3 should be possible starting with 3furoic acid 4. We herein report (1) an improved method for the synthesis of 2,3-disubstituted furans and (2) the synthesis and IMDAF reaction of precursors such as compound 3.

The C-2 lithiation of 3-substituted furans usually leads to a mixture of C-2 and C-5 mono-anions.⁸ Knight *et al.*⁹ have been the only group to successfully lithiate a 3-substituted furan regiospecifically in the C-2 position by treating 3-furoic acid 4 with 2.2 equiv. of LDA (lithium diisopropylamide). Although the C-2 anion could be trapped in high yield with reactive electrophiles (*i.e.* MeI, aldehydes and ketones, yields >90%), poorer yields were obtained when sluggish electrophiles, such as iodoethane and 5-iodopent-1-ene, were employed (yields <42%). In our hands, the reaction of the dianion of 3-furoic acid with 4-bromobut-1-ene provided acid 5 (Scheme 2) in only 10% yield.

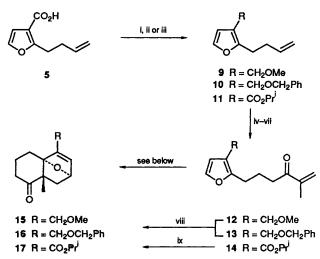
Scheme 2 Reagents: i, 4-bromobut-1-ene; ii, H₃O⁺

We have recently reported¹⁰ that 2-methyl-3-furoic acid 6 can be lithiated directly with 2.0 equiv. of butyllithium to form dianion 7 (Table 1).† Trapping this dianion with 3-bromoprop-1-ene provided acid 5, which was immediately converted into the methyl ester 8 (in 70% yield, two steps) by treatment with diazomethane¹² (Table 1, entry 4).‡§ This reaction was not limited to reactive electrophiles, since electrophiles which are usually sluggish to react with alkyllithium species (entries 2, 3 and 5) provided alkylated products in good to excellent yields after conversion into the methyl ester. The yield of the ester resulting from the addition of 2-(2-bromoethyl)-1,3-dioxolane (entry 1) was low (40%) due to the formation of the corresponding aldehyde upon work-up with 10% HCl; the aldehyde-acid was unstable at room temperature and subsequently decomposed. Finally, aldehydes and ketones (entries 6-8) reacted smoothly to provide the corresponding alcohols in good yield.

The improved alkylation with compound 6 when compared to those reported⁹ for 3-furoic acid 4 is possibly due to the inherent stability of the dilithio species 7 in tetrahydrofuran (THF) at room temperature, thereby allowing more time for the electrophile to react with the dianion. The dianion of 3-furoic acid when stirred for 2 h at room temperature in THF did not incorporate deuterium when treated with deuterium oxide.


IMDAF precursors 12–14 were prepared as outlined in Scheme 3. Thus, acid 5 was either converted into the isopropyl ester 11¹³ or reduced with lithium aluminium hydride to provide the corresponding alcohol, which was protected as a methyl 9 or benzyl ether 10.¹⁴ Hydroboration–oxidation¹⁵ of compounds 9–11, followed by Swern oxidation¹⁶ provided the corresponding aldehydes. Treatment of the aldehydes with 2lithiopropene¹⁷ followed by oxidation of the allylic alcohols with Fetizon's reagent¹⁸ provided IMDAF precursors 12–14, respectively.

[†] In a similar manner, Tada *et al.* have reported that deprotonation occurs at the C-2 methyl group of 2,4-dimethyl-3-furoic acid when treated with 2.0 equiv. of LDA (see ref. 11).


[‡] We have found the esters easier to purify than the corresponding carboxylic acids.

[§] All compounds provided analytical and/or spectroscopic data consistent with their structures.

Table 1 Results of the lithiation of 2-methyl-3-furoic acid

" Isolated yields after purification.

Scheme 3 Reagents and conditions: i, LAH, Et₂O; ii, NaH, MeI or BrCH₂Ph; iii, K₂CO₃, 2-iodopropane, DMF, room temp. (83%); iv, BH₃·Me₂S, Et₂O, 0 °C; NaOH, H₂O₂ (76%); v, Swern [O] (89%); vi, 2-bromopropene + Bu'Li, Et₂O, -78 °C (90%); vii, Ag₂CO₃ on Celite, C₆H₆ (95%); viii, 0.1 equiv. MeAlCl₂, CH₂Cl₂, -78 °C, 1 h (93–95%); ix, 0.1 equiv. MeAlCl₂, CH₂Cl₂, -40 °C, 2 h (63%)

Treatment of either precursor 12 or 13 with 0.1 equiv. of methylaluminium dichloride in methylene chloride at -78 °C for 1 h provided adducts 15 (93%) and 16 (95%) respectively. Only the adducts, in which the methyl group was orientated *anti* to the oxygen bridge, were detected (by ¹H NMR spectroscopy) and isolated.⁶ In order to reduce the number of synthetic steps towards avarol, precursor 14, which has an electron-withdrawing group on both the furan diene and dienophile, was treated with 0.1 equiv. of methylaluminium dichloride in methylene dichloride at -40 °C. Surprisingly, a 35:65 ratio of 14:17* was obtained after 2 h, which did not

increase with longer reaction times. Increasing or decreasing the temperature resulted in ratios in favour of starting material 17 [e.g. temperature (14:17 ratio): -78 °C (80:20); -60 °C (75:25); -20 °C (70:30); 0 °C (90:10)]. Although reverse electron demand intramolecular Diels-Alder (IDA) reactions are common, IDA reactions involving electron-withdrawing groups on both the diene and dienophile are rare;¹⁹ only one successful example has been reported, which involved a side arm containing three carbon atoms.²⁰ The successful synthesis of adduct 17 provides a useful intermediate towards the synthesis of avarol. Nucleophilic oxygen-bridge ring-openings of adducts 15–17 are currently under investigation.

In summary, (1) the lithiation of 2-methyl-3-furoic acid and trapping the resulting dianion with electrophiles provides an excellent entry into various 2-substituted-3-furoic acids which were not possible *via* the direct lithiation of 3-furoic acid, and (2) the use of catalytic methylaluminium dichloride in the IMDAF reaction is useful for precursors having substituents in the C-3 position of the furan ring and for systems containing an electron-withdrawing group on both the dienophile and furan ring.

Typical Experimental Procedure.—To a solution of 2-methyl-3-furoic acid¹⁰ 6 (0.1 mmol) in THF at -20 °C was added 2.0 equiv. of butyllithium and the solution stirred for 1 h. The resulting dianion 7 was quenched with a variety of electrophiles (1.5 equiv., room temp., 16 h), which provided upon work-up (10% HCl) the corresponding carboxylic acids (Table 1). The acids were immediately treated with diazomethane in diethyl ether to provide the corresponding methyl esters 8.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Calgary Research Board for financial support.

References

- L. Minale, R. Riccio and G. Sodano, Tetrahedron Lett., 1974, 15, 3401; S. de Rosa, L. Minale, R. Riccio and G. Sodano, J. Chem. Soc., Perkin Trans. 1, 1976, 1408; W. E. G. Muller, R. K. Zahn, M. J. Gasic, N. Dogovic, A. Maidhof, C. Becker, B. Diehl-Seifert and E. Eich, Comp. Biochem. Physiol., 1985, 80C, 47; D. M. Kushlan and D. J. Faulkner, Tetrahedron, 1989, 45, 3307; A. Crispino, A. de Giulio, S. de Rosa and G. Strazzullo, J. Nat. Prod., 1989, 52, 646; S. Hirsch, A. Rudi and Y. Kashman, J. Nat. Prod., 1991, 54, 92.
- 2 P. A. Sarin, D. Sun, A. Thornton and W. E. G. Muller, J. Natl. Cancer Inst., 1987, 78, 663.
- 3 W. E. G. Muller, H. C. Schroder, P. Reuter, P. S. Sarin, G. Hess, K.-H. M. Zum Buschenfelde, Y. Kuchino and S. Nishimura, *Aids Research and Human Retroviruses*, 1988, 4, 279; E. Sandstrom, *Drugs*, 1989, 38, 417; Y. Kuchino, M. Mizushima, H. C. Schroder and W. E. G. Muller, *Arch. Aids Res.*, 1990, IV, 61.
- 4 A. S. Sharma and P. Chattopadhyay, J. Org. Chem., 1982, 47, 1727.
 5 J. W. ApSimon and K. Yamasaki, Chem. Lett., 1977, 1453; S. Takahashi, S. T. Kusumi and H. Kakisawa, Chem. Lett., 1979, 515; A. B. Smith III and R. Mewshaw, J. Org. Chem., 1984, 49, 3685; A. S. Sharma and A. K. Gayen, Tetrahedron, 1985, 41, 4581; P. Magnus, C. Walker, P. R. Jenkins and K. A. Menear, Tetrahedron Lett., 1986, 27, 651; T. Tokoroyama, K. Fujimori, T. Shimizu, Y. Yamagiwa, M. Monden and H. Iio, Tetrahedron, 1988, 44, 6607; H. Hagiwara and H. Uda, J. Org. Chem., 1988, 53, 2308.
- 6 C. Rogers and B. A. Keay, Can. J. Chem., 1992, in the press; C. Rogers and B. A. Keay, Tetrahedron Lett., 1991, 32, 6477; C. Rogers and B. A. Keay, Synlett., 1991, 353; C. Rogers and B. A. Keay, Synlett., 1989, 30, 1349; B. A. Keay and P. W. Dibble, Tetrahedron Lett., 1989, 30, 1045; B. A. Keay, J. Chem. Soc., Chem. Commun., 1987, 419.
- 7 S. Woo and B. A. Keay, *Tetrahedron Lett.*, 1992, 33, 2661; B. A. Keay, C. Rogers and J.-L. J. Bontront, J. Chem. Soc., Chem. Commun., 1989, 1782.

^{*} The starting material 14 and adduct 17 are easily separated on silica gel column (20:1; light petroleum-EtOAc) to provide adduct 17 in 63% yield. The recovered starting material was recycled twice to provide adduct 17 in 90% isolated yield.

- 8 (a) S. Katsumura, K. Hori, S. Fujiwara and S. Isoe, Tetrahedron Lett., 1985, 26, 4625; S. P. Tanis and D. B. Head, Tetrahedron Lett., 1984, 25, 4451; (b) D. Goldsmith, D. Liotta, M. Saindane, L. Waykole and P. Bowen, Tetrahedron Lett., 1983, 24, 5835; (c) I. Paterson and M. Gardner, *Tetrahedron* 1989, **45**, 5283; (d) D. L. Commins and M. O. Killpack, *J. Org. Chem.*, 1987, **52**, 104.
- 9 D. W. Knight and A. P. Nott, J. Chem. Soc., Perkin Trans. 1, 1981, 1125; D. W. Knight, Tetrahedron Lett., 1979, 20, 469.
- 10 S. Yu and B. A. Keay, J. Chem. Soc., Perkin Trans. 1, 1991, 2600.
- 11 M. Tada, Y. Sugimoto and T. Takahashi, Chem. Lett., 1979, 1441.
- 12 T. H. Black, Aldrichim. Acta, 1983, 16, 3.
- 13 S. C. Welch, C.-Y. Chou, J. M. Gruber and J.-M. Assercq, J. Org. Chem., 1985, 50, 2668.
- 14 T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 1991, Wiley, New York.

- 15 C. F. Lane, J. Org. Chem., 1974, 39, 1437.
- 16 A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
 17 W. F. Bailey, T. T. Nurmi, J. J. Patricia and W. Wang, J. Am. Chem. Soc., 1987, 109, 2442.
- 18 A. McKillop and D. W. Young, Synthesis, 1979, 401.
 19 G. Brieger and J. N. Bennett, Chem. Rev., 1980, 80, 63; A. G. Fallis, Can. J. Chem., 1984, 62, 183; E. Ciganek, Org. React., 1984, 32, 1; B. H. Lipshutz, Chem. Rev., 1986, 86, 795; D. Craig, Chem. Soc. Rev., 1987, 16, 187; W. R. Roush, Adv. Cycloadd., 1990, 2, 91.
- 20 M. E. Jung and K. M. Halweg, Tetrahedron Lett., 1981, 22, 2735.

Paper 2/04133B Received 31st July 1992 Accepted 3rd September 1992