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Access to Functionalized Thienopyridines via a Reagent-Capsule-
Assisted Coupling, Thiolation and Cyclization Cascade Sequence 
Jialing Cai, Shuo Huang, Ruenfa He, Lu Chen, Donghan Chen, Shaohua Jiang, Bin Li* and 
Yibiao Li*

Thienopyridines and related heterocycles were prepared in a 
straightforward manner in moderate to good yields and under 
mild conditions by the palladium-catalysed cross-coupling of 
ortho-fluorinated iodopyridines and terminal alkynes, followed by 
a reagent-capsule-assisted thiolation cyclization process. By 
applying paraffin wax capsules to prevent catalyst poisoning and 
undesired side reactions, the separation and purification 
processes were reduced. 

The Sonogashira cross-coupling reaction is a well-recognized, 
powerful method for the preparation of arylalkynes and 
enynes through Csp-Csp2 bond formation[1]with applications in 
pharmaceuticals, natural products and molecular organic 
materials.[2] Due to the compatibility of palladium and copper 
catalysts, when direct used these acetylene synthons in 
subsequent translation, the purification of these acetylene 
products appears to be unavoidable, thereby increasing the 
manual operations and time consumed. Paraffin capsules 
present an alternative solution to this problem. Particularly, in 
multi-component reactions based on the Sonogashira cross-
coupling reaction, the reagent may affect the palladium and 
copper catalysts and the terminal alkyne encapsulated in the 
paraffin wax capsules.[3] During the completion of the cross-
coupling reaction, raising the temperature can melt the 
paraffin capsule, releasing reagents and leading to subsequent 
reactions. Therefore, reagent encapsulation can not only 
protect against air- and moisture-sensitive reagents but also 
reduce the amount of required separation and purification 
processes. 

The development of sustainable and efficient 
methodologies for the synthesis of thienopyridines and related 
heterocycles is crucial in modern organic synthesis due to their 
wide biological activities and pharmaceutical applications.[4] 

For example, DRAK2 [5] was reported as drug target for 
treatment of autoimmune diseases. Research by Boschelli and 
co-workers identified a thieno[3,2-b]pyridine-based drug 
candidate as Src kinase inhibitors.[6] The thieno[3,2-
d]pyrimidine core was also utilized by Folkes and co-workers, 
who reported a new class of orally bioavailable inhibitor for 
the treatment of cancer, such as 3.[7] Despite the importance 
of thienopyridines, synthetic methodologies for their 
production remain limited, and the provision various of these 
heterocycle compounds may represent a bottleneck for 
further studies and application in medicinal chemistry. The 
transition metal-catalysed cyclization of 3-aminothiophene 
derivatives is the most general and versatile synthetic 
methodology for the preparation of thienopyridine 
heterocycles.[8]  

Our success in preparing benzo[b]furans and 
benzo[b]thiophenes using Na2S•9H2O as a thiol surrogate 
encouraged us to employ related chemistry for the 
preparation of thienopyridine derivatives.[9] To the best of our 
knowledge, the sole attempt to involve ethynylpyridine in the 
formation of thienopyridine was made by Queiroz and co-
workers, who obtained only 2-(hetero)aryl thienopyridines in 
good yields.[10] However, the utility of the above reactions is 
limited by their harsh conditions, and aliphatic alkynes do not 
react in this chemistry. Using ortho-fluoroiodopyridines as 
model substrates, we initially considered employing Na2S·9H2O 
in DMSO as the solvent at 130 °C, following the procedure 
described by Queiroz and co-workers. In the presence of 
Na2S·9H2O, this reaction produced 2-phenylthieno[2,3-
b]pyridine 3a in 23% yield in 12 hours at 130 °C, but also gave 
the unexpected 2-phenylfuro[2,3-b]pyridine 4a in 69% yield 
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Figure 1 Pharmaceutically active compounds containing 
the thienopyridine core. 
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(Figure 2) (see supporting information). [11] Alternatively, we 
envisioned that the weakly nucleophilic thiol surrogate is 
essential in this thiolation cyclization process. Gratifyingly, the 
yield of 2-phenylthieno[2,3-b]pyridine 3a was improved to 88% 
when EtOC(S)SK was employed as the thiol surrogate. In view 
of our on-going research to develop new methods in 
heterocycle synthesis[12], herein, we report an efficient and 
flexible synthetic protocol for the synthesis of thienopyridine 
and related heterocycles, utilizing a strategy consisting of 
palladium-catalysed sequential coupling, in situ thiolation and 
S-cyclization. 

Furthermore, simple and practical techniques for paraffin 
encapsulation technology have been introduced in organic 
synthesis, especially for moisture- or air-sensitive 
compounds[13] and multicomponent reactions.[14] Encouraged 
by these results, we investigated the substrate scope of 
palladium-catalysed coupling, thiolation and cyclization 
reactions using a reagent-capsule-assisted method. As shown 
in Scheme 1, both electron-deficient and electron-rich 
arylalkynes reacted with ortho-fluoroiodopyridines to give the 
corresponding thieno[2,3-b]pyridine products in moderate to 
good yields (Scheme 1). Functional groups,  including alkyl, 
OMe, NMe2, F, Cl, Br, CF3 and pyridine, can be well tolerated. 
Notably, we found that the ortho substituents of the benzyl 
group did not affected the coupling  and annulation reaction 
(Scheme 1, 3i and 3j). When 2-fluoro-3-iodopyridine and 2-
fluorophenylacetylene were used as reaction substrates, the 2-
fluoro moiety on pyridine served as the leaving group and gave 
2-(2-fluorophenyl)thieno[2,3-b]pyridine 3j as the sole product. 
Substrates bearing heterocycles such as 3-thienyl or 2-pyridyl 
groups could also form the corresponding thieno[2,3-
b]pyridine products 3o and 3p in moderate to good yields. 
Ortho-fluoroiodopyridines with different substitution patterns 
were tested as well. Substituents, including Me and Cl, were 
well tolerated (Scheme 1, 3q and 3r). 

To extend the substrate scope, we used aliphatic alkynes to 
investigate the possibility of this transformation (Scheme 2). 
First, when ortho-fluoroiodopyridine was used as the substrate, 
a wide variety of aliphatic alkynes were screened and gave 
thieno[2,3-b]pyridine products in good yields. The reaction of 
non-1-yne provided a slightly higher yield than that of 
ethynylcyclopentane (Scheme 2, 3s-3u). We were pleased to 
find that the internal C≡C triple bond was good tolerated 
under the optimization conditions (Scheme 2, 3v). Notably, the 
reaction of octa-1,7-diyne with ortho-fluoroiodopyridine 
afforded 2-(3-(thieno[2,3-b]pyridin-2-yl)propyl)thieno[2,3-
b]pyridine 3w in 76% yield. Furthermore, the presented 
method was not limited to the use of arylalkyne derivatives as 

substrates, although the use of arylalkynes and aliphatic 
alkynes appeared to facilitate the process, given that alkynols 
afforded 2-(thieno[2,3-b]pyridin-2-yl)propan-2-ol derivatives in 
slightly lower yields than when using the arylalkyne systems. 

Scheme 1  Synthesis of 2-(hetero)arylthieno[2,3-b]pyridines a,b 
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a Reaction conditions: fluoroiodopyridine 1 (1.0 mmol), 
terminal alkyne 2 (1.3 mmol), PdCl2(PPh3)2 (5 mol%), CuI (10 
mol%), Et3N (4.0 mmol), EtOC(S)SK (2.0 mol) in paraffin wax 
capsule, DMSO (2 mL) at 35 °C for 10 h, then 90 °C for 12h. b 
Yields are given for isolated products. 

Scheme 2 Synthesis of 2-alkylthieno[2,3-b]pyridines a,b 
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octa-1,7-diyne (0.65 mmol) was used. 
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Figure 2: Synthesis of thieno[2,3-b]pyridines. 
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When ortho-fluoroiodopyridine was used, a wide variety of 
propargyl alcohols were successfully employed in this process 
(Scheme 2, 3x-3ac). Notably, when 1-ethynylcyclohexanol was 
employed as the substrate, the unexpected dehydration 
product 3aa was obtained in 73% yield. Additionally, pent-1-
yn-3-ol also reacted with ortho-fluoroiodopyridine to afford 1-
(thieno[2,3-b]pyridin-2-yl)propan-1-ol 3ab in moderate yields. 
Importantly, substrates bearing a CF3 group at the tertiary 
alcohol were compatible with this reaction, and the 
coupling/cyclization product 3ac was generated in 68% yield. 

Next, several sulfur- and nitrogen-containing heterocycles 
were prepared using this method (Scheme 3). Starting from 
commercially available ortho-fluorinated iodopyridines and 
terminal alkynes, moderate to good yields were achieved. 
Thieno[3,2-b]pyridines (3ad and 3ae)[15], thieno[2,3-c]pyridines 
(3af and 3ag)[16], thieno[3,2-c]pyridines (3ah)[17] and 
thieno[3,2-d]pyrimidines (3ai)[7] were readily prepared via the 
sulfur reagent-capsule-assisted cyclization reaction. 4-F- and 2-
Cl-substituted pyridines afforded the Cl-substituted product 
3ah as the sole product in standard condition. Interestingly, 5-
fluoro-4-iodopyrimidines were converted into thieno[3,2-
d]pyrimidines 3ai in moderate yields. This practical reagent 
encapsulation method might be useful for further exploration 
of the total synthesis of thieno[3,2-d]pyrimidine-based 
pharmaceuticals and natural products.[18] 

Finally, the transformation of ortho-fluoroiodopyridine and 
terminal alkynes to the 2-arylfuro[2,3-b]pyridines derivatives is 
highly efficicent under a reagent-capsule-assisted annulation 
process. As shown in Scheme 4, the reagent-capsule-assisted 
substitution and O-cyclization syntheis of furo[2,3-b]pyridine 
derivatives in moderate to good yields. Unfortunately, the 
reaction with ethynyltrimethylsilane only affords chaotic 
system in strong alkali condition. 

The postulated reaction mechanism for the synthesis of 
thienopyridines is proposed in Scheme 5. Initially, there will be 
a nucleophilic substitution of ortho-fluorinated iodopyridines A 
with EtOC(S)SK provide intermediate B[9]. The corresponding 
pyridyl thiolate C is in situ generated through the hydrolysis of 
B[19], which then undergoes intramolecular cyclization 
generates thienopyridine products with the aid of CuI. 

In conclusion, an efficient and practical palladium-catalysed 
cross-coupling, thiolation and cyclization method for preparing 
functionalized thienopyridines and related heterocycles in a 
one-pot synthetic process that makes use of a reagent 
capsuleis was reported. This coupling and cyclization method 
displays a variety of substrate scope and well tolerance of 
functional groups. The use of reagent encapsulation methods 
helped reduce operational procedure and purification of 
intermediates, especially greatly promoting the development 
of environmentally friendly multicomponent reaction. 
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Scheme 4  Synthesis of 2-arylfuro[2,3-b]pyridinesa,b 
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Scheme 3 Synthesis of high substituted thiophenesa,b 
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Scheme 5  Proposed mechanism for the cyclization reaction 
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