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The application of alkaline earth metal complexes as sub-
stitutes for transition-metal catalysts in alkene hydrofunc-
tionalizations has drawn increasing attention in recent years
owing to their abundance, biocompatibility, and chemical
behavior, which resembles that of the rare-earth elements.[1]

A number of magnesium, calcium, and strontium catalysts[2]

have been shown to exhibit activity comparable to catalysts
based on rare-earth metals[3] in the highly desirable hydro-
amination reaction.[4] Unfortunately, alkaline earth metal
complexes are prone to facile Schlenk-type ligand redistrib-
utions[1, 5] that can result in catalyst deactivation and hamper
efforts to perform these transformations in a stereoselective[6]

manner. Indeed, previous attempts to elaborate chiral alka-
line earth metal catalysts for asymmetric hydroaminations
have not produced enantioselectivities exceeding 36 % ee.[7]

In order to address this issue we have recently developed
achiral phenoxyamine magnesium catalysts that resist ligand-
redistribution reactions under the conditions of hydroamina-
tion catalysis.[8] Herein we disclose our findings on the
development of a chiral magnesium catalyst for the enantio-
selective hydroamination which achieves—unprecedented for
alkaline earth metal catalysts—enantioselectivities of up to
93% ee.[9] The high catalytic activity of this system permits
reactions to be performed at or below room temperature in
several cases, which is unprecedented in the chemistry of
alkaline earth metal complexes as well.[10]

Chiral phenoxyamine ligands incorporating a chelating
cyclohexyldiamine arm have been applied in indium-[11] and
zinc-catalyzed[12] lactide polymerizations. We decided to
utilize the related phenoxyamine ligand (R,R)-1 in which
the increased steric demand of the triphenylsilyl substituent
should eliminate undesired ligand-exchange processes and
improve stereoselectivity. Reaction of (R,R)-1 with [Mg-
(CH2Ph)2(thf)2] produced the phenoxyamine magnesium
complex (R,R)-2 as a 9:1 mixture of diastereomers (based
on 1H NMR spectroscopy) in 63 % yield of crystallized
product (Scheme 1).[13] The two diastereomers differ in the
chirality at magnesium and the central N-methyl amine
group.[12] A second recrystallization furnished pure (R,R)-2-
MgR (Figure S1 a in the Supporting Information).[14] A
solution of pure (R,R)-2-MgR in [D6]benzene slowly returned
to the 9:1 equilibrium mixture of diastereomers within 5 h at
25 8C (Figure S1b).[14] The complex was stable at 80 8C for
12 h, and a mixture of both diastereomers was obtained in a
5:1 ratio (Figure S1 c);[14] this composition was retained for
24 h when the mixture was allowed to cool to room temper-
ature.[15] Higher temperatures (120 8C) resulted in decompo-
sition of the precatalyst 2, but a model complex for the

catalytically active magnesium amide species was found to be
stable under these conditions (vide infra).

The X-ray crystallographic analysis of rac-2 (Figure 1)[16]

revealed the expected tetrahedral geometry around magne-
sium as seen in achiral phenoxyamine magnesium com-
plexes[8, 17] and related zinc complexes.[12] The methine proton
on C15 is oriented trans to the N-methyl group at N2 which
results in an R-configured magnesium stereocenter in the
(R,R)-cyclohexyldiamine enantiomer.

With complex (R,R)-2 in hand we were eager to evaluate
its catalytic performance in intramolecular hydroaminations
(Table 1). We were pleased to find that (R,R)-2 displayed high
catalytic activity as well as outstanding enantioselectivities in
the cyclizations of aminopentenes 3a–d. Reactions with 2–
5 mol% catalyst were complete within 1.5–10 h at 22 8C. More
intriguingly and unprecedented for alkaline earth metal
catalysts, the cyclization of the more activated substrates
3a–c proceeded also readily at �20 8C (Table 1, entries 2, 5,
and 9) with the highest enantioselectivity of 90 % ee observed

Scheme 1. Synthesis of the chiral phenoxyamine magnesium complex
(R,R)-2.

Figure 1. ORTEP diagram of the molecular structure of rac-2. Thermal
ellipsoids are shown at the 50% probability level, and hydrogen
atoms, except for those attached to C10 and C15, are omitted for
clarity. Selected bond lengths [�] and angles [8]: Mg1–O1 1.896(4),
Mg1–N1 2.157(5), Mg1–N2 2.149(5), Mg1–C1 2.152(6); O1-Mg1-N1
111.22(18), O1-Mg1-N2 95.17(17), O1-Mg1-C1 121.9(2), N1-Mg1-C1
113.9(3), N2-Mg1-C1 124.2(2), N1-Mg1-N2 83.25(18), Mg1-O1-C19
129.1(3), Mg1-C1-C2 114.8(5).
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in the cyclization of 3b. The reaction of the unsubstituted
aminopentene 3e required heating to 80 8C and proceeded
with a reduced selectivity of 51 % ee.[18]

Substrates 3 f and 3g containing an 1,2-disubstituted
double bond were cyclized rapidly at 22 8C as a result of the
activating effect of the electron-withdrawing phenyl substitu-
ent. Both substrates could also be cyclized at�20 8C to furnish
the pyrrolidines 4 f and 4g in 93 and 92% ee (Table 1,
entries 14 and 16), respectively. The enantioselectivities
obtained for 4b, 4 f, and 4g are among the highest published
results so far.[19,20]

Overall, (R,R)-2 exhibits at room temperature catalytic
activity comparable to that of Hill�s b-diketiminate magne-
sium complex,[2e,k] but it is more active than our achiral
phenoxyamine complexes[8] and Sadow�s tris(oxazolinyl)phe-
nylborato magnesium complexes.[2l, 7c]

The presence of a mixture of diastereomers could pose a
problem in obtaining reproducible selectivities with different
batches of precatalyst. However, we were unable to find a
significant difference in the selectivity when either diastereo-
merically pure (R,R)-2-MgR or a 5:1 diastereomeric mixture
of the precatalysts were applied in the cyclization of 3b and
3g (Table 1, entries 6, 7, and 17). The stoichiometric reaction
of (R,R)-2 with 1–3 equiv of pyrrolidine in [D6]benzene at
various temperatures uniformly showed a 9:1 diastereomeric
ratio and no decomposition became apparent after 3 h at
120 8C (Figures S2 and S3 in the Supporting Information).[14]

Kinetic studies show that the cyclization of 3b is first-
order in catalyst and substrate (Figures S8 and S9).[14] This
contrasts our finding for related achiral triphenylsilyl-sub-
stituted phenoxyamine complexes that exhibited zero-order
kinetics in substrate.[8] Certainly, the cyclohexyl ring side
chain in (R,R)-2 is significantly more rigid than the propyl-
idene side chain in the achiral phenoxyamine complexes. The
slow rate of diastereomer interconversion observed for (R,R)-
2-MgR in [D6]benzene indicates that dissociation of the side
arm in (R,R)-2 is hampered. The catalytic reaction proceeded
also with a considerable primary kinetic isotope effect (kH/
kD = 3.6, Figure S10),[14] but no significant change in enantio-
selectivity was observed (84 % ee for 4b vs. 82% ee for
[D2]4b). These findings suggest that the cyclization of amino-
alkenes by (R,R)-2 proceeds by means of a concerted alkene-
insertion/protonolysis mechanism[21,22] analogous to that
recently proposed by Hill et al.[2k] and Sadow et al.[2l]

In order to further exploit the catalytic activity of the
magnesium catalyst 2 we decided to investigate the signifi-
cantly more challenging intermolecular hydroamination of
alkenes.[2f,3a, 23] Hill and co-workers recently reported that
homoleptic calcium and strontium amides catalyze the anti-
Markovnikov addition of amines to vinyl arenes, but the
corresponding magnesium amide was much inferior.[2f, 24]

Gratifyingly, complex 2 is also capable of catalyzing these
transformations efficiently. The addition of pyrrolidine to
styrene proceeded to 87% conversion with exclusive anti-
Markovnikov regioselectivity within 16 h at 60 8C in neat
solution using 5 mol% of (R,R)-2 (Table 2, entry 1). The
addition of pyrrolidine to the more-electron-deficient p-
chlorostyrene required only 4 h at 60 8C to reach 89%
conversion, and even at room temperature the reaction
proceeded to 69 % conversion in 48 h. The reaction of
benzylamine required a higher reaction temperature of
80 8C to give 76% conversion in 8 h. Overall, the activity of
the magnesium complex (R,R)-2 seems to be of comparable
magnitude to the calcium and strontium amides investigated
by Hill et al.[2f]

The potential of our magnesium catalyst was also
demonstrated in a intramolecular/intermolecular tandem
reaction (Scheme 2). Cyclization of 3b (neat) with (R,R)-2
at room temperature produced 4b quantitatively in slightly
lower selectivity than under more dilute conditions (cf.

Table 1: Asymmetric intramolecular hydroamination/cyclization of ami-
noalkenes catalyzed by (R,R)-2.[a]

Entry Substrate Product T [8C]; t [h][b] ee
[%][c]

1 22; 1.5[d] 74
2 �20; 12[d,e] 80

3 22; 2 84
4 22; 4.5[f ] 85
5 �20; 48[e] 90
6 22; 2 84[g]

7 22; 2 83[h]

8 22; 3 76/76[i]

9 �20; 72[e] 82/82[i]

10 22; 10 79

11 80; 72[j,k] 51

12 22; 0.1 88
13 22; 0.2[f ] 90
14 �20; 12[e,f ] 93[l]

15 22; 2[m] 88
16 �20; 36[e] 92[l]

17 22; 3 86[h]

[a] Reaction conditions: 0.1 mmol substrate, 5 mol% (R,R)-2 (d.r. = 9:1),
0.6 mL [D6]benzene, Ar atmosphere. [b] Time required to achieve �95%
yield (NMR analysis; ferrocene as internal standard). [c] Determined by
19F NMR analysis of Mosher amides. [d] 3 mol% (R,R)-2. [e] Reaction in
[D8]toluene. [f ] 2 mol% (R,R)-2. [g] Pure (R,R)-2-MgR. [h] (R,R)-2
(d.r. = 5:1). [i] d.r. = 1.2:1. [j] 10 mol% (R,R)-2. [k] 81 % yield (NMR
analysis). [l] Enantiomeric excess was also confirmed by HPLC with a
chiral stationary phase. [m] Preparative-scale reaction: 86% yield of
isolated product.
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Table 1, entry 3). Subsequently, the addition of 4 b to p-
chlorostyrene proceeded at 80 8C in 20 h to 75% conversion
to give the tertiary pyrrolidine 5 (56 % yield of isolated
product) in 68% ee.[25]

The results presented herein highlight the great potential
of alkaline earth metal catalysts in the very challenging areas
of asymmetric and intermolecular hydroamination. The
suppression of Schlenk-type ligand-redistribution processes
is an important prerequisite to achieve high enantioselectiv-
ities. With the catalyst system (R,R)-2 presented herein we
have successfully demonstrated that this goal is attainable
utilizing a sterically demanding phenoxyamine ligand set. The
enantioselectivities achieved with catalyst (R,R)-2 in the
cyclization of aminoalkenes significantly surpass all previous
attempts reported for alkaline earth metal based catalysts. At
the same time, complex (R,R)-2 displays high catalytic activity
and reactions have been carried out below room temperature
for the first time using alkaline earth metal catalysts. Finally,
we have shown that magnesium-based complexes can be
viable catalysts for intermolecular hydroamination reactions
(including tandem intramolecular/intermolecular processes)
with activities comparable in magnitude to the usually much
more reactive calcium- and strontium-based catalysts. There-
fore, it can be anticipated that the corresponding phenoxy-
amine complexes of the heavier alkaline-earth metals will
exhibit even greater catalytic performance.

Experimental Section
Typical catalytic intermolecular hydroamination reaction: A screw-
cap vial was charged with the catalyst precursor (R,R)-2 (6.9 mg,
0.01 mmol, 5 mol%), the olefin (0.24 mmol), and the amine

(0.2 mmol). The vial was then placed in a preheated metal block
(25–80 8C), and conversion was monitored by 1H and 13C NMR
spectroscopy from samples taken from the reaction mixture. Final
conversions were determined from the disappearance of character-
istic olefinic signals. For a preparative-scale reaction see the
Supporting Information.
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