

Synthetic ommunications

Chemistry

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Synthesis of tetrazoles, triazoles, and imidazolines catalyzed by magnetic silica spheres grafted acid

Ruihang Jiang, Hong-Bin Sun, Shuang Li, Kun Zhan, Junjie Zhou, Lei Liu, Kai Zhang, Qionglin Liang & Zhangpei Chen

To cite this article: Ruihang Jiang, Hong-Bin Sun, Shuang Li, Kun Zhan, Junjie Zhou, Lei Liu, Kai Zhang, Qionglin Liang & Zhangpei Chen (2018) Synthesis of tetrazoles, triazoles, and imidazolines catalyzed by magnetic silica spheres grafted acid, Synthetic Communications, 48:20, 2652-2662, DOI: 10.1080/00397911.2018.1510007

To link to this article: https://doi.org/10.1080/00397911.2018.1510007

View supplementary material 🕝

Published online: 14 Nov 2018.

🖉 Submit your article to this journal 🗹

View Crossmark data 🗹

Check for updates

Synthesis of tetrazoles, triazoles, and imidazolines catalyzed by magnetic silica spheres grafted acid

Ruihang Jiang^a, Hong-Bin Sun^a, Shuang Li^a, Kun Zhan^a, Junjie Zhou^a, Lei Liu^a, Kai Zhang^a, Qionglin Liang^b, and Zhangpei Chen^a

^aDepartment of Chemistry, Northeastern University, Shenyang People's Republic of China; ^bDepartment of Chemistry, Tsinghua University, Beijing, People's Republic of China

ABSTRACT

The magnetically separable catalysts are used in the synthesis of Ncontaining heterocycles, including tetrazoles, triazoles, and imidazolines. The magnetic silica sphere grafted sulfonic acid (MSS-SO₃H) is suitable for the synthesis of 1,2,3-triazole via the cycloaddition of nitroalkene with NaN₃, whereas the zinc-modified silica sphere catalyst (MSS-SO₃Zn) is more suitable for the synthesis of tetrazoles. The MSS-SO₃Zn catalyst also works well for the synthesis of 2-substituted imidazoline via the condensation of nitriles with ethylenediamine. Both of the MSS-SO₃H and MSS-SO₃Zn catalysts can be recovered easily by a magnet, and they can be reused without further tedious activation.

GRAPHICAL ABSTRACT $R \stackrel{fi}{=} \stackrel{HN-N}{\longrightarrow} A$ $R \stackrel{fi}{=} \stackrel{HN-N}{\longrightarrow} A$ A: 8 samples, up to 97% yields B: 12 samples, up to 99% yields C: 11 samples, up to 91% yields

ARTICLE HISTORY

Received 17 January 2018

KEYWORDS

Magnetically separable; silica sphere; imidazolines; triazoles; tetrazoles; heterocycles

Introduction

With the increasing development of catalytic synthesis strategies, the reusable catalysts have drawn much attention and resonated across numerous disciplines. In recent years, many magnetically separable catalysts have been developed for constructing versatile organic compounds via the C–C, C–X coupling reactions^[1–4], and Fischer–Tropsch synthesis reactions.^[5] Besides, the magnetic nanoparticles are also widely applied to remove phosphates from wastewater^[6] and reduction of acetophenone.^[7] The magnetically

CONTACT Hong-Bin Sun 🐼 sunhb@mail.neu.edu.cn; Zhangpei Chen 🐼 chenzhangpei@mail.neu.edu.cn 🗊 Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.

⁽b) Supplemental data (full experimental detail and ¹H and ¹³C NMR spectra) for this article can be accessed on the publisher's website.

^{© 2018} Taylor & Francis Group, LLC

separable nano-catalysts also hold an important position in the synthesis of heterocycles. For example, a graphene oxide/Fe₃O₄ supported Mo catalyst was reported to synthesize dihydropyridines efficiently, and this catalyst could be reused for eight times with no decrease in catalytic activity.^[8] Similarly, the CeO₂-Fe₃O₄ nanoparticles catalyzed synthesis of benzoxazole and benzothiazole have also been presented.^[9] Moreover, the Fe₃O₄ supported Cu was developed for the synthesis of quinazolinones and bicyclic pyrimidinones,^[10] and a magnetic Pd-graphene catalyst was proved to be an efficient protocol for synthesizing 2-alkylquinolines.^[11] The functionalized magnetic particles have been used in the synthesis of indole derivatives^[12] and pyrazole-fused isocoumarins.^[13] In this work, we applied two magnetically modified silica spheres catalysts to the synthesis of the triazoles, tetrazoles, and imidazolines. One is Fe₃O₄@SiO₂ grafted sulfonic acid catalyst (MSS-SO₃H), and the other is zinc-exchanged MSS-SO₃H named as MSS-SO₃Zn.

Results and discussion

The magnetic silica nanospheres were synthesized according to a typical method,^[14, 15] then 3-mercaptopropyl trimethoxysilane (MPTMS) was employed to graft the –SH group on the silica sphere surface. The nanospheres were oxidized by H_2O_2 , then the catalyst MSS-SO₃H was obtained. Stirring the MSS-SO₃H in a concentrated Zn(NO₃)₂ solution for 24 h at room temperature formed the zinc-exchanged catalyst MSS-SO₃Zn. The structure of two prepared materials was characterized by HR-TEM, EDS, and VSM analysis. From the Figure 1(a,b), we can find that the general size of the magnetic silica sphere is about 400 nm. Figure 1(c) indicates that the magnetic Fe₃O₄ is in the core position of the MSS-SO₃H because of doping of Zn. Figure 1(d–h) further demonstrates the structure of the nanoparticle was Fe₃O₄@SiO₂-SO₃Zn. Particularly, Figure 1(h) reveals that Zn mainly distributes on the catalyst's surface. Therefore, the structure presented in Figure 1(h) was confirmed as Fe₃O₄@SiO₂-SO₃Zn.

The magnetic property of the MSS-SO₃Zn and recycled MSS-SO₃Zn catalyst was investigated using a vibrating sample magnetometer at room temperature. As illustrated in Figure 2, the magnetization curves of the prepared materials exhibited tiny hysteresis loops, which demonstrated its paramagnetic characteristics. The magnetic intensity of recycled MSS-SO₃Zn is stronger than that of the fresh MSS-SO₃Zn, this may be due to the zinc leaching. Moreover, the catalyst can be separated by external magnetic field as illustrated in Figure S1.

First, the as-prepared catalyst MSS-SO₃H was applied to synthesize the triazoles, whose derivatives were used widely as the agricultural chemicals.^[16] Typically, the synthesis of triazoles have been well developed by the Cu(I) catalyzed cycloaddition of organic azides with terminal alkynes.^[17] To avoid the possible toxicity of residual cupric catalyst, nontoxic BiCl₃,^[18] and metal-free protocol were also reported.^[19] A more recent research reported an acid-base bifunctional heterogeneous catalyst.^[20] In our study, a variety of triazoles have been synthesized through the condensation between nitroalkenes and sodium azide under the optimized reaction conditions (Table S1). As shown in Table 1, the magnetic silica sphere based catalyst MSS-SO₃H is highly effective

2654 🕢 R. JIANG ET AL.

Figure 1. The morphology of MSS-SO3H and MSS-SO₃Zn: (a and b) HR-TEM of MSS-SO₃Zn (c) TEM of MSS-SO3H, EDS analysis of MSS-SO₃Zn: (d) Fe distribution (e) O distribution; (f) Si distribution (g) S distribution (h) Zn distribution.

Field (G)

Figure 2. The VSM curses of MSS-SO₃Zn (a) and recovered MSS-SO₃Zn (b).

for most substrates to synthesize triazoles. The nitroalkenes bearing chloro, bromo, and isopropyl group gave excellent yields (1a-1e). The hindrance of ortho-substituted chloro atom led to a slightly declined yield (1c). The substrate bearing a strong electron-with-drawing $-NO_2$ gave 92% yield (1h), whereas the substrates bearing electron-donating group -OH (1f, 1g) and isopropyl (1e) gave lower yields of 78%, 81%, and 83%. This suggested that the formation of 1,2,3-triazole might proceed a pathway of a [3+2] cycloaddition, whereas the nitroalkene was the electrophiles.

With the successful application of MSS-SO₃H to the synthesis of triazole, we further investigated the cycloaddition of benzonitriles with sodium azide to synthesize tetrazoles, which were widely used in pharmacochemistry, coordination chemistry, photography, and agriculture fields.^[21,22] The common method of preparing 5-substituted-1H-tetrazoles is the cycloaddition of nitriles with azide, and multitudinous catalysts have been reported such as Lewis acid $Cu_2(OTf)_2$,^[23] $CdCl_2$,^[24] $Fe(OAc)_2$,^[25] $ZnCl_2$,^[26] $AlCl_3$,^[27] $FeCl_3$,^[28] and heterogeneous catalysts such as nanoscale $ZnS^{[29]}$ and Cu_2O .^[30] Even $Br \oslash nsted$ acids like HCl, NH₄Cl, and AcOH can be applied to synthesize tetrazoles via the cycloaddition of nitriles and azides.^[31,32]

Considering the Br \oslash nsted acidity of SO₃H and its potential to catalyze the cycloaddition of nitriles and azides, we applied MSS-SO₃H to synthesize 5-substituted-1H-teterazoles. To our delight, the MSS-SO₃H showed good efficiency for this reaction after optimizing the reaction conditions (Table S2). As listed in Table 2, some nitriles were

	R ₁ NO ₂	+ NaN ₃ $\frac{60 \circ C}{cata}$	R_1 R_1	
Entry	Substrate	Product	1	Yield/%
1	NO ₂		1a	97
2	CI NO2		1b	95
3			1c	80
4	Br NO ₂	Br	1d	83
5	NO ₂	$ = \overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset$	1e	83
6	HO, NO ₂	HO N-N N	1f	78
7	HO NO2	но-Дуна на н	1g	81
8	NO ₂ NO ₂ NO ₂		1h	92

Table 1. Synthesis of triazoles catalyzed by MSS-SO₃H.^a

^aReaction conditions: 1 mmol α , β -unsaturated nitroarenes derivative and 2 mmol sodium azide, 60 °C, 1 h, 2 mL DMF as solvent, 10 wt% catalyst.

transformed into the target tetrazoles smoothly. Especially, the substrates bearing electron-withdrawing groups afforded corresponding target products in excellent yields, such as **2a–2d**. However, there were still some substrates could not offer satisfactory yields, such as **2e–2h**. In particular, more substrates bearing electron-donating groups afforded moderate to low yields. Considering the unsatisfactory yields of the target products, we modified the MSS-SO₃H catalyst by zinc-exchanging to promote the catalytic efficiency. As Table 2 shown, the zinc-exchanged MSS-SO₃H presented as MSS-SO₃Zn shows better performance in this reaction, it affords higher yields than MSS-SO₃H. Similarly, the yields of electron-deficient substrates (**2a–2e**) were much higher than that of electron-rich substrates (**2f, 2g**). Meanwhile, we screened the substrates (**2i–2l**) and obtained the corresponding products in higher yields.

To explore more application of the MSS-SO₃Zn catalyst, we utilized MSS-SO₃Zn catalyst to synthesize the imidazolines, which were applied widely with synthetic intermediates, chiral auxiliaries, chiral catalysts, and ligands for asymmetric catalysis. The synthetic protocol is the cycloaddition of benzonitriles with ethylenediamine, which is a typical approach. The reactions were conducted under the optimistic conditions. (The

	R ₂ —CN	+ NaN ₃	24 h,140 °C	R ₂		
				2		
Entry	Substrate		Product	2	Yield/% ^b with A	Yield/% ^b with B
1	<u>с</u> рси		K N.N N.N N.N	2a	88	93
2	F ₃ C-CN		F ₃ C-√−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	2b	94	99
3			COCCANN N-N	2c	92	95
4	Br		Br H N-N N-N	2d	99	98
5	Br-CN		Br-K-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	2e	59	67
6	MeO CN		MeO	2f	36	55
7	MeO-CN		MeO-	2g	28	45
8	CN CN			2h	52	67
9	CI-CN		CI-CI-N-N N-N	2i	68	74
10	CI CN			2j	47	56
11	-CN			2k	36	52
12	<->−cn			21	28	56

Table 2. Synthesis of tetrazoles using MSS-SO₃H(A) & MSS-SO₃Zn(B).^a

^aReaction conditions, 2 mmol benzonitriles, 3.2 mmol sodium azide, 10 wt% of catalyst, 140 °C for 24 h. ^bIsolated yields.

2658 🛞 R. JIANG ET AL.

optimization is presented in Table S3). As Table 3 shown, the catalyst $MSS-SO_3Zn$ offers moderate to good isolated yields of imidazolines in general. Both electron-donating and electron-withdrawing substrates could afford high conversions to target products, such as **3d** and **3i**. The phenylacetonitrile also gave the corresponding product in moderate yields (**3j**) and some other benzonitriles (**3f**, **3g**, and **3k**) also showed moderate to good conversions. The bromo atoms in **3b** and **3c** were substituted by $-NH-CH_2CH_2-NH_2$ because of the strong nucleophilicity of excess ethylenediamine.

Both of the MSS-SO₃H and MSS-SO₃Zn catalyst are magnetically recoverable. As Figure 3 shown, MSS-SO₃Zn catalyst exhibits higher catalytic activity than MSS-SO₃H for synthesizing tetrazoles but its reusability was lower than MSS-SO₃H due to the leaching of Zn. Anyway, a recovered MSS-SO₃Zn catalyst can regenerate its original catalytic activity by zinc ion exchanging. Moreover, MSS-SO₃H was suitable for synthesizing triazoles with high activity and reusability. However, the decreasing catalytic performance of MSS-SO₃H was also observed, that may due to the inevitable loss of catalyst nanoparticles during the work up. In a word, the catalytic activity of the two catalysts did not lose too much after six times runs. This means both of the catalyst MSS-SO₃H and MSS-SO₃Zn are stable enough for the synthesis of triazoles, tetrazoles, and imidazolines.

Experiments

Preparation of catalyst MSS-SO₃H and MSS-SO₃Zn

A portion of 0.2 g prepared Fe_3O_4 nanoparticles (method was introduced in the first part of Supplementary Materials) was treated by ultrasonic in the 0.1 M HCl solution for 10 min. Then, the activated Fe_3O_4 particles were dispersed into a mixture of 160 mL alcohol, 40 mL deionized H₂O, and 4 mL 25% NH₃·H₂O. After that, 1 mL tetraethoxylsilane (TEOS) was added into the above solution drop by drop, and the resulting mixture was stirred for 6 h. The magnetically collected solid was put into isopropanol (200 mL), then MPTMS (1 mL) was added into the liquid and the reaction was kept at 80 °C for 3 h to functionalize the silica surface with the thiol groups. The decanted functionalized silica sphere was put into 30 wt% H₂O₂ and stirred for 10 h under room temperature to form the sulfonic acid group. Finally, the catalyst MSS-SO₃H were obtained by clean-up and drying and its structure can be described by Fe₃O₄@SiO₂-SO₃H.

The fabrication of the catalyst MSS-SO₃Zn is described as below: the as-prepared catalyst MSS-SO₃H was stirred for 12 h in saturated $Zn(NO_3)_2$ alcohol solution. The obtained particles were cleaned with alcohol for three times and dried at 80 °C.

General procedure for the synthesis of triazoles (1a-1h)

A mixture of 10 wt% catalyst MSS-SO₃H, (2-Nitro-vinyl)-benzene derivatives (1 mmol), sodium azide (2 mmol) and DMF (2 mL) was added into a sealed tube, then heated for 1 h at 60 °C. After the catalyst was removed by magnetic separation (Figure S1), the solution was cooled and diluted with water, then extracted with ethyl acetate/petroleum ether for further evaporation. After evaporation, we obtained the isolated triazoles. A sample for characterization was purified on a flash silica column.

	CN + (CH ₂ NH ₂) ₂	130 °C, 24 h	M N	
	R R	catalyst		
Entry	Substrate	Product	3	Yield/%
1	СМ		3 a	83
2	Br] 3b	58
3	Br	$H_2N \sim N \sim N$) 3c	67
4	MeO-CN	MeO-	3d	91
5	MeO CN	MeO H N N	3e	25
6	<u>с</u> р		3f	71
7	→_CN		3g	69
8	-CN	$- \overset{N}{\underset{H}{\overset{N}}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}}}}}}}}}$	3h	15
9	F ₃ C-CN	$F_3C \xrightarrow{N} H$	3i	85
10	CN		3j	56
11	но-	но-СУ-К М Н	3k	56

Tab	le 3.	Synthesis of imidazoline	s catalyzed b	y MSS-SO₃Zn.ª
-----	-------	--------------------------	---------------	---------------

^aReaction conditions: benzonitrile derivatives (1 mmol), ethylenediamine (2 mL), catalyst MSS-SO₃Zn (45 mg/mmol), 140 °C, 24 h, isolated yield.

5 -Phenyl-1H-1,2,3-triazole (1a)

White solid. M.P. 140–143 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.27 (s, 1H), 7.85 (d, J=7.1 Hz, 2H), 7.43 (d, J=7.8 Hz, 2H), 7.32 (s,1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 145.3, 131.2, 129.0, 128.1, 127.4, 125.9. MS (ESI) m/z for C₈H₇N₃: 146 ([M + H]⁺).

- 5-Phenyl-1H-tetrazole catalyzed by MSS-SO3H
- 5-Phenyl-1H-[1,2,3]triazole catalyzed by MSS-SO3H

Figure 3. Recycling of the catalyst MSS-SO₃H and MSS-SO₃Zn for the synthesis of tetrazoles, tiazoles, and imidazolines.

General procedure for the synthesis of tetrazoles (2a-2l)

The benzonitrile derivatives (2 mmol), sodium azide (3.2 mmol), and DMF (2 mL) were mixed in a sealed tube, then 30 mg of catalyst MSS-SO₃H (or catalyst MSS-SO₃Zn) was added into the tube, which was heated for 24 h under 140 °C. After 24 hours' reaction, the catalyst was separated by magnetic force, and the solution was poured into water. The liquid was acidified to pH 1, then ethyl acetate was added to extract the tetrazoles. Carefully evaporating the solvent under reduced pressure, we got the isolated tetrazoles. A sample for characterization was purified on a flash silica column.

5 -Phenyl-1H-tetrazole (2a)

White solid; M.P: 216–217 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 7.64–7.65 (m, 3H), δ 8.07–8.10 (m, 2H); ¹³C NMR (151 MHz, DMSO-d₆) δ 155.3, 130.3 129.9, 127.9, 126.8. HRMS: calcd. for C₇H₈N₄ (M + H⁺) 147.0665; found 147.0670.

General procedure for the synthesis of imidazolines (3a-3k)

The benzonitrile derivatives (1 mmol) and ethylenediamine (2 mL) were mixed in a sealed tube, then 45 mg of MSS-SO₃Zn catalyst was added. The mixture was heated at 130 °C for 24 h. After cooling, the catalyst was separated by magnetic force, and the organic layer was detached. Deionized water and dichloromethane were added into the organic liquid. The organic layer was evaporated to obtain the isolated imidazolines. A sample for characterization was purified on a flash silica column.

2 -phenyl-4,5-dihydro-1H-imidazole(3a)

White solid; M.P. $102 \sim 103 \,^{\circ}$ C; ¹H NMR (600 MHz, Chloroform-d) δ 7.39–7.78 (m, 5H), 4.61 (s, 1H), 3.77 (s, 4H); ¹³C NMR (151 MHz, DMSO-d₆) δ 163.9, 130.9, 130.6, 128.5, 127.4, 49.9. MS (ESI) m/z for C₉H₁₀N₂: 147 ([M + H]⁺).

Conclusions

In conclusion, we have developed two magnetically separable and reusable catalysts to synthesize imidazolines, tetrazoles, and triazoles. The grafted sulfuric acid based catalyst $Fe_3O_4@SiO_2-SO_3H$ (MSS-SO_3H) showed high activity in synthesizing triazoles, whereas the zinc-exchanged catalyst $Fe_3O_4@SiO_2-SO_3Zn$ (MSS-SO_3Zn) showed excellent performance in the synthesis of tetrazoles and imidazolines. Both of them can be recovered facilely by magnetic separation and reused for at least six runs. These heterogeneous catalysts were consistent with the concept of environmental friendliness.

Funding

This work was financially supported by National Natural Science Foundation of China (21235004, 21175080), the Fundamental Research Funds for the Central University (N160503001), the Science and Technology Foundation of Liaoning Province (20170520185), and the Ministry of Science and Technology (2013ZX09507005).

References

- Guerra, R. R. G.; Martins, F. C. P.; Lima, C. G. S.; Gonçalves, R. H.; Leite, E. R.; Pereira-Filho, E. R.; Schwab, R. S. *Tetrahedron. Lett.* 2017, 58, 903–908. DOI:10.1016/ j.tetlet.2017.01.046
- [2] Karimi, B.; Mansouri, F.; Mirzaei, H. M. ChemCatChem. 2015, 7, 1736–1789. DOI: 10.1002/cctc.201403057
- [3] Karimi, B.; Mansouri, F.; Vali, H. Green. Chem. 2014, 16, 2587–2596. DOI:10.1039/ c3gc42311e
- [4] Sun, X.; Zheng, Y.; Sun, L.; Lin, Q.; Su, H.; Qi, C. Nano-Struct. Nano-Objects. 2016, 5, 7-14. DOI:10.1016/j.nanoso.2016.01.003
- [5] Park, J. C.; Kang, S. W.; Kim, J. C.; Kwon, J. I.; Jang, S.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H.-T.; Jung, H.; et al. *Nano Res.* 2017, 10, 1044–1055. DOI:10.1007/s12274-016-1364-7
- Yang, J.; Shen, D.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S.; Teng, W.; Fan, J.;
 Zhang, S.; et al. *Nano Res.* 2015, *8*, 2503–2514. DOI:10.1007/s12274-015-0758-2
- [7] Park, J. C.; Song, H. Nano Res. 2011, 4, 33-49. DOI:10.1007/s12274-010-0039-z
- [8] Zhang, M.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. Catal. Commun. 2017, 88, 39–44. DOI:10.1016/j.catcom.2016.09.028
- [9] Shelkar, R. S.; Balsane, K. E.; Nagarkar, J. M. Tetrahedron Lett. 2015, 56, 693–699. DOI: 10.1016/j.tetlet.2014.12.069
- [10] Yu, L.; Wang, M.; Li, P.; Wang, L. Appl. Organometal. Chem. 2012, 26, 576–582. DOI: 10.1002/aoc.2902
- [11] Verma, S.; Verma, D.; Jain, S. L. Tetrahedron. Lett. 2014, 55, 2406–2409. DOI:10.1016/ j.tetlet.2014.02.120
- Kothandapani, J.; Ganesan, A.; Selva Ganesan, S. *Tetrahedron. Lett.* 2015, 56, 5568–5572.
 DOI:10.1016/j.tetlet.2015.08.043

2662 🕢 R. JIANG ET AL.

- [13] Mukherjee, S.; Kundu, A.; Pramanik, A. Tetrahedron. Lett. 2016, 57, 2103–2108. DOI: 10.1016/j.tetlet.2016.04.002
- [14] Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S. Chem. Soc. Rev. 2015, 44, 7540–7590. DOI:10.1039/C5CS00343A
- [15] El-Toni, A. M.; Habila, M. A.; Labis, J. P.; Alothman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Nanoscale. 2016, 8, 2510–2531. DOI:10.1039/C5NR07004J
- [16] Elmorsi, M. A.; Hassanein, A. M. Corros. Sci. 1999, 41, 2337–2352. DOI:10.1016/S0010-938X(99)00061-X
- [17] Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. DOI: 10.1021/jo011148j
- [18] Sun, H-b.; Li, D.; Xie, W.; Deng, X. Heterocycles. 2016, 92, 423–430. DOI:10.3987/COM-15-13371
- [19] Kwok, S. W.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.; Fokin, V. V. Org. Lett. 2010, 12, 4217–4219. DOI:10.1021/ol101568d
- [20] Liu, L.; Ai, Y.; Li, D.; Qi, L.; Zhou, J.; Tang, Z.; Shao, Z.; Liang, Q.; Sun, H.-B. ChemCatChem. 2017, 9, 3131–3137. DOI:10.1002/cctc.201700401
- [21] Mani, P.; Singh, A. K.; Awasthi, S. K. Tetrahedron. Lett. 2014, 55, 1879–1882. DOI: 10.1016/j.tetlet.2014.01.117
- Babu, B.; Guggilapu, S.; Prajapti, S.; Nagarsenkar, A.; Gupta, K. Synlett. 2016, 27, 1241–1244. DOI:10.1055/s-0035-1561559
- [23] Bosch, L.; Vilarrasa, J. Angew. Chem. Int. Ed. Engl. 2007, 46, 3926–3930. DOI:10.1002/ anie.200605095
- [24] Venkateshwarlu, G.; Premalatha, A.; Rajanna, K. C.; Saiprakash, P. K. Synth. Commun. 2010, 41, 4479-4485.
- [25] Bonnamour, J. C. Bolm. Chemistry. 2009, 15, 4543-4545. DOI:10.1002/chem.200900169
- [26] Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. Synthesis-Stuttgart. 2014, 46, 781–786.
- [27] Matthews, D. P.; Green, J. E.; Shuker, A. J. J. Comb. Chem. 2000, 2, 19–23. DOI:10.1021/ cc990035z
- [28] Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. Tetrahedron. Lett. 2009, 50, 4435–4438. DOI:10.1016/j.tetlet.2009.05.048
- [29] Lang, L.; Li, B.; Liu, v.; Jiang, L.; Xu, Z.; Yin, G. Chem. Commun. (Camb.). 2010, 46, 448–450. DOI:10.1039/B912284B
- [30] Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y. Tetrahedron. Lett. 2008, 49, 2824–2827. DOI:10.1016/j.tetlet.2008.02.115
- [31] Schmidt, B.; Meid, D.; Kieser, D. *Tetrahedron.* 2007, 63, 492–496. DOI:10.1016/ j.tet.2006.10.057
- [32] Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Org. Chem. 2012, 77, 10882–10890. DOI: 10.1021/jo3022742