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Abstract—New methodology for 2-alkylation of 3-furoic acids is presented involving Wittig reactions of the 3-methoxycarbonyl-2-
furanylmethylphosphonium salt. The methodology has been used to prepare a tethered 2-alkylated-UC-781/d4T conjugate as a
potentially new type of HIV reverse-transcriptase inhibitor.
� 2005 Elsevier Ltd. All rights reserved.
2,3-Disubstituted furans constitute a widely encountered
sub-unit in a range of natural and synthetic products.
2-Alkylation of 3-furoic acids has been a commonly
employed strategy for entry1 into this sub-unit with two
carbanionic methodologies standing out as versatile
options. Knight was the first person to demonstrate2 that
treatment of 3-furoic acid with 2 equiv of LDA (THF/
�78 �C) regioselectively furnishes the dianion 1 (Fig.
1), which can be alkylated with a range of reactive elec-
trophiles. However, with less reactive electrophiles, for
example, ethyl iodide, yields were low. Keay and
co-workers subsequently3 demonstrated that 2-methyl-
3-furoic acid reacts with 2 equiv of n-BuLi at �20 �C
to furnish the 2-lithiomethyl dianion 2 which is more sta-
ble than 1, giving higher yields with less reactive electro-
philes. Development of 2 followed pioneering work by
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Figure 1.
Tada et al.4 on use of the 2-dianion of 2,4-dimethyl-3-
furoic acid 3 in natural product synthesis (Fig. 1).

As part of a programme to synthesise novel, bifunc-
tional HIV reverse-transcriptase inhibitors, we needed
access to quantities of 2-alkylated-3-furoates in conjunc-
tion with incorporation of the non-nucleoside inhibitor
UC-7815 into a bifunctional inhibitor. In view of the
unattractive prospect of using large quantities of n-
BuLi, we embarked on a study to identify an alternative,
which we successfully report in this communication. It
occurred to us that Wittig methodology based on the
3-methoxycarbonyl-2-furanylmethylphosphonium salt
might provide the answer in view of the option of using
a mild base to generate the stabilised ylide. Although 2-
furanylmethylphosphonium salts6 have been known and
used in synthesis for some time, the corresponding
3-furoates are hitherto unknown. To this end, radical
bromination of commercially available methyl 2-methyl-
furoate using conditions recently reported by Khatuya7

furnished methyl 2-bromomethyl furoate in high yield,
which, following evaporation of the solvent and addi-
tion of triphenylphosphine in toluene furnished (rt,
overnight) the desired and novel triphenylphosphonium
salt 4 by filtration. Isolation of product involved no
chromatography, with a single crystallisation from
methanol returning analytically pure material in 80%
overall yield.

Pleasingly, reaction of 4 in methanol with sodium meth-
oxide as base (5 M in MeOH; 1.1 equiv) at rt followed
by addition of hexanal (1.2 equiv) as a model aldehyde
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Scheme 1. Reagents and conditions: (i) NBS, (BzO)2 (cat), CCl4, D; (ii) PPh3, toluene, rt (80% over two steps); (iii) NaOMe (1.1 equiv), MeOH,

C5H11CHO (92%); (iv) H2, Pd–C, EtOH (80%).

Table 1. Wittig olefination and hydrogenation of 4 with various

aldehydes

R of RCHO % Yield of 5 % Yield of 6

(a) H 92 80

(b) CH3 90 61

(c) C5H11 92 80

(d) C4H9OBn 91 84
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resulted in rapid transformation to the Wittig product 5
in high yield as a mixture (�1:1) of E/Z stereoisomers.
Carrying the reaction out in THF using sodium hydride
as base gave a significantly lower yield (�50%) of the
Wittig product in a higher E/Z ratio. Subsequent hydro-
genation (H2/Pd–C) gave the anticipated 2-alkylated
product 6 in high yield (80%). A small percentage
(�10%) of the 4,5-dihydro-2-alkylated product8 was
also obtained, which could be minimised by varying
the reaction conditions, but not completely eliminated
(Scheme 1).

A range of aldehydes appropriate to producing alkyl-
ated side chains were subjected to the olefination/hydro-
genation sequence and the results are presented in Table
1. Yields cited are relevant to reactions carried out in
1–10 mmol range. Reactions involving formaldehyde,
ethanal and 5-benzyloxypentanal9 all underwent smooth
Wittig reactions in high yield as with the model reaction
and, where appropriate, similarly to products with
about an equal E/Z isomer ratio. Subsequent hydro-
genation of each one gave a small percentage of the
4,5-dihydro derivative as in the hexanal case, which
could be separated from the desired alkylated product
by careful silica-gel column chromatography. Hydro-
genation of alkene 5d resulted in concomitant hydrogen-
olysis of the benzyl ether (Scheme 2).

As part of a programme on the synthesis of new HIV
reverse-transcriptase inhibitors, we were able to demon-
strate applicability of the methodology to two new C-2
variants of the potent thiocarboxanilide non-nucleoside
HIV reverse-transcriptase inhibitor, UC-7815 (Fig. 2).
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Scheme 2. Reagents: (i) NaOMe, MeOH, RCHO; (ii) H2, Pd–C, EtOH.
To this end, hydrogenolysis of 6d to alcohol 7 followed
by tosylation and substitution with propargyloxy anion
furnished the propynyl ether 8. Interestingly, the substi-
tution proceeded more cleanly this way round, that is,
was superior than propargylation of the alkoxide of 7
with propargyl bromide. Subsequent base-mediated
ester hydrolysis, conversion to the acid chloride with
thionyl chloride followed by substitution with substi-
tuted aniline 910 (Fig. 2) furnished amide 10 in high
overall yield from the acid. Finally, thiation of amide
10 with Lawesson�s reagent11 produced the C-2 elon-
gated UC-781 derivative 1112 for biological probing13

of substituent effects in the HIV reverse-transcriptase
pocket (Scheme 3).

Alkyne 10 was also subjected to a Sonogashira14 reac-
tion with the nucleoside reverse-transcriptase inhibitor
derivative, 5 0-O-benzoyl-5-iodo-d4T,15 to afford conju-
gate 1216 following benzoyl group deprotection. Conju-
gate 12 involves a combination of the two antiretroviral
drugs d4T and UC-781, albeit with the amide of UC-781
unthiated. Significant interest has been shown recently
in conjugates17 of this type, in view of the fact that the
nucleotide substrate binding-site is proximal to the
non-nucleoside binding pocket. Compound 12 is the first
example of a UC-781-derived conjugate (unthiated) as a
result of developing this methodology. Further work on
thiation is in progress to produce UC-781 analogues
(Scheme 4).

In summary, new methodology applicable to medium to
large-scale work has been developed for C-2 alkylation
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Scheme 4. Reagents and conditions: (i) 5 0-benzoyl-5-iodo-d4T, Pd(PPh3)4 (10%), CuI (50%), NEt3 (2 equiv), DMF–THF (1:2), rt (65%); (ii) NaOMe,

MeOH, rt (52%).
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Scheme 3. Reagents and conditions: (i) p-TsCl, NEt3, CH2Cl2, DMAP (cat) (97%); (ii) propargyl alcohol (10 equiv), NaH (10 equiv), THF, D; (iii)

KOH, EtOH, (85%, two steps); (iv) SOCl2, D; (v) RNH2, Py, (99%, two steps to give amide 10); (vi) Lawesson�s reagent, NaHCO3, toluene, D (70%).
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of 3-furoates of interest to both natural product synthe-
sis and medicinal chemistry.
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