Tetrahedron Letters 52 (2011) 4430-4432

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Organocatalytic α -amination of α, α -disubstituted aldehydes promoted by 9-amino-(9-deoxy)-epi-qui-

nine is described. α-Hydrazino aldehydes bearing a quaternary stereogenic center are obtained in good

Alaric Desmarchelier, Hasret Yalgin, Vincent Coeffard, Xavier Moreau*, Christine Greck*

Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45, Avenue des Etats-Unis, 78035 Versailles Cedex, France

to excellent yields and enantioselectivities.

ARTICLE INFO

ABSTRACT

Article history: Received 12 May 2011 Revised 14 June 2011 Accepted 15 June 2011 Available online 23 June 2011

Keywords: Amination Organocatalysis Primary amine Branched aldehydes

Quaternary stereocenter

Over the last decade, organocatalytic α -amination of aldehydes and ketones has emerged as one of the most powerful methods for stereoselective C–N bond formation.¹ While electrophilic amination of simple aliphatic carbonyl compounds is well documented in the literature,² the use of α, α -disubstituted aldehydes to form quaternary stereocenter-containing products bearing a nitrogen atom still remains scarce. In 2003, Bräse and co-workers reported the first example of this transformation using proline as a catalyst.³ In 2005, Barbas and co-workers applied this strategy to the synthesis of three biologically active products namely, BIRT-377,⁴ AIDA and APICA.⁵ More recently, Wang et al. have shown that the same reaction could be efficiently promoted by chiral secondary amine derived from proline.⁶ Primary amine catalysts were also found to be effective for this transformation. Melchiorre and co-workers developed a cascade reaction involving an electrophilic amination catalyzed by a primary amine derived from hydroquinine.⁷ Finally, our group has recently described an organocatalytic sequence combining Michael addition/α-amination promoted by an aminated cinchonine derivative.⁸ In this letter, we would like to report our results about the enantioselective amination of α , α -disubstituted aldehydes catalyzed by primary amines derived from cinchona alkaloids.

Electrophilic amination of commercially available 2-phenylpropionaldehyde with diisopropyl azodicarboxylate (0.83 equiv) was examined as the reaction model and the results are summarized in Table 1. Combination of 9-amino-(9-deoxy)-epi-cinchonidine I (5 mol %) and TFA (15 mol %) in chloroform was first investigated (entry 1) since this catalyst system was successfully applied for such a transformation by our group.⁸ While the reactivity was excellent (full conversion within 3 h at rt and 94% of isolated yield), the enantioselectivity was disappointing (68% ee). When the reaction was run in CH₂Cl₂ or toluene (entries 2 and 3) the reactivity remained good but the selectivity was lower (respectively 58% and 50% ee). If more polar or protic polar solvents such as MeCN or iPrOH (entries 4 and 5) were used for this reaction, both reactivity and selectivity dropped (after 3 h, the conversion was not complete and the selectivity was poor). As the stereoselectivity was not improved by lowering the temperature to 0 °C (entry 6), we then screened various primary amine catalysts derived from cinchona alkaloids. Moving from 9-amino-(9-deoxy)-epi-cinchonidine I to 9-amino-(9-deoxy)-epi-quinine II greatly enhanced the ee (entry 7). The expected product was obtained in 95% yield and 90% ee. Pseudo-enantiomers of these catalysts were not effective for this transformation (entries 8 and 9). 9-Amino-(9-deoxy)-epi-cinchonine III almost led to a racemic sample and 9-amino-(9-deoxy)epi-quinidine IV delivered the product as the opposite enantiomer in 95% yield and only 55% ee. Finally the influence of the amount of acid co-catalyst was also investigated. Slow conversion and poor selectivity were observed when the reaction was carried out without TFA (entry 10) while using 7.5 mol % TFA required longer reaction time and the product was obtained in 84% yield and 92% ee (entry 11).

With the optimized conditions in hands⁹ (1 equiv DIAD, 1.2 equiv aldehyde, 5 mol % catalyst **II**, 15 mol % TFA in CHCl₃ at rt), we then turned our attention to the influence of the electrophilic nitrogen source and the reaction was conducted with different azodicarboxylates (Table 2). As expected, less hindered

© 2011 Elsevier Ltd. All rights reserved.

versames-saint-Quentin-en-

^{*} Corresponding authors. Tel.: +33 (0) 1 39 25 44 05; fax: +33 (0) 1 39 25 44 52 (X.M.).

E-mail addresses: moreau@chimie.uvsq.fr, xavier.moreau@chimie.uvsq.fr (X. Moreau), greck@chimie.uvsq.fr (C. Greck).

^{0040-4039/\$ -} see front matter \circledast 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.063

Table 1Catalyst and solvent screening

^a Isolated yield after column chromatography.

^b Ee was determined by chiral phase HPLC analysis (AS-H column, 10% iPrOH/heptane, 0.8 mL/min, 30 °C).

^c Reaction run at 0 °C during 24 h.

^d Reaction run without TFA during 56 h.

e Reaction run with 7.5 mol % TFA during 8 h.

Table 2Azodicarboxylate screening

0 ^{Ph}	+ RO ₂ C _N ^{<n< sup="">CO₂R (5 r TFA (1 CHCI r.t</n<>}	mol%) 15 mol%) 1 ₃ (0.5M) t., 3h	CO_2R N NHCO ₂ R Ph		
Entry	Azodicarboxylate	Yield ^a (%)	ee ^b (%)		
1	<i>i</i> PrO₂C _N ^{∽N} CO₂iPr	95	90		
2	EtO ₂ C _N [×] N _{CO2} Et	88	84		
3	BnO₂C∑NÉN∑CO₂Bn	72	82		
4	tBuO₂C _N ∕N _{CO₂} tBu	96	95		

^a Isolated yield after column chromatography.

^b Ee was determined by chiral phase HPLC analysis.

azodicarboxylates such as diethyl or dibenzyl (DEAD or DBAD) afforded the aminated product with slightly lower selectivity. In contrast, more hindered di-*tert*-butylazodicarboxylate (DtBAD) afforded the expected α -aminoaldehyde with excellent yield (96%) and selectivity (95% ee).

Various branched aldehydes were tested for this reaction and the results are listed in Table 3. Switching from 2-phenylpropionaldehyde to 2-phenylbutyraldehyde afforded the expected α hydrazino aldehyde in 82% yield and 94% ee (entry 2). Lower yield and enantioselectivity due to the increasing steric demand were not observed as reported previously.^{3b} Electron-rich and electron-deficient aryl groups substituted in *ortho*- or *para*-position

Table 3 Aldehyde screening

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	OMe NH ₂				
$\begin{tabular}{ c c c c c c c c c c c c c c c } \hline \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	0 - F R ¹	²² + Boc _N ^N	`Boc	(5 mol%) TFA (15 mo CHCl ₃ (0.5 r.t.	$ \begin{array}{c} & & \\ & & \\ & & \\ \hline \\ & & \\ M \end{array} $	Boc N NHBoc ¹		
1 Ph Me 1 96 95 ^c 2 Ph Et 2 82 94 ^c 3 p -MeOC ₆ H ₄ Me 3 87 88 ^d 4 o -MeOC ₆ H ₄ Me 4 95 99 ^d 5 o -NO ₂ C ₆ H ₄ Me 5 83 94 ^e	\ Entry	R ¹	\mathbb{R}^2	Product	Yield ^b (%) ^a	ee (%)		
2 Ph Et 2 82 94^c 3 p -MeOC ₆ H ₄ Me 3 87 88 ^d 4 o -MeOC ₆ H ₄ Me 4 95 99 ^d 5 o -NO ₂ C ₆ H ₄ Me 5 83 94 ^e	1	Ph	Me	1	96	95°		
3 p-MeOC ₆ H ₄ Me 3 87 88 ^d 4 o-MeOC ₆ H ₄ Me 4 95 99 ^d 5 o-NO ₂ C ₆ H ₄ Me 5 83 94 ^e	2	Ph	Et	2	82	94 ^c		
4 $o-MeOC_6H_4$ Me 4 95 99 ^d 5 $o-NO_2C_6H_4$ Me 5 83 94 ^e	3	p-MeOC ₆ H ₄	Me	3	87	88 ^d		
5 $0-NO_2C_6H_4$ Me 5 83 94^e	4	o-MeOC ₆ H ₄	Me	4	95	99 ^d		
	5	o-NO ₂ C ₆ H ₄	Me	5	83	94 ^e		
6 Bn Me 6 72 36 ^c	6	Bn	Me	6	72	36 ^c		

^a Isolated yield after column chromatography.

^b Ee was determined by chiral phase HPLC analysis.

^c AD-H column, 10% *i*PrOH/heptane, 0.8 mL/min, 30 °C.

^d OD-H column, 2% iPrOH/heptane, 0.9 mL/min, 30 °C.

^e AS-H column, 5% *i*PrOH/heptane, 0.9 mL/min, 30 °C.

were well tolerated and provided good to excellent results in terms of reactivities and selectivities (entries 3–5). However, if the phenyl group was replaced by a benzyl group, the product was obtained in 72% yield but the enantioselectivity dropped to 36% ee (entry 6).

Finally, this methodology was applied to the synthesis of a quaternary α -aminoester (Scheme 1).¹⁰ The α -hydrazino aldehyde **2** was oxidized under smooth conditions and esterified to provide the α -hydrazino methyl ester **7** in 67% yield over two steps. Boc protecting groups were removed under acidic conditions and the

Scheme 1. Reagents and conditions: (a) (i) KH_2PO_4 , $NaClO_2$, H_2O_2 , $MeOH/MeCN/H_2O$ (1/1/1), 0 °C to rt, 2 h; (ii) TMSCHN₂, MeOH, rt, 0.5 h, 67% (over two steps); (b) (i) TFA, DCM, 0 °C to rt, 3 h; (ii) H₂, Ni-Raney, MeOH, rt, 48 h, 76% (over two steps).

hydrazine bond was hydrogenated in the presence of Ni-Raney to afford (*S*)-ethyl phenylglycine methyl ester $\mathbf{8}^{11}$ in 76% yield over two steps.

In summary, we have developed an organocatalytic α -amination of α, α -disubstituted aldehydes promoted by 9-amino-(9deoxy)-epi-quinine. α -Hydrazino aldehydes bearing a tetrasubstituted stereocenter were obtained in good to excellent yields and enantioselectivities. This methodology was successfully applied to the synthesis of a quaternary α -aminoester.

Acknowledgment

The authors thank the Ministère de la Recherche for a Grant to A.D.

References and notes

- (a) Vilaivan, T.; Bhanthumnavin, W. Molecules 2010, 15, 917–958; (b) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. 2004, 1377–1385.
- For seminal reports, see: (a) Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790–1793; (b) List, B. J. Am. Chem. Soc. 2002, 124, 5656–5657; (c) Ait-Youcef, R.; Kalch, D.; Moreau, X.;

Thomassigny, C.; Greck, C. *Lett. Org. Chem.* **2009**, 6, 377–380; (d) Ait-Youcef, R.; Sbargoud, K.; Moreau, X.; Greck, C. *Synlett* **2009**, 3007–3010; (e) Ait-Youcef, R.; Moreau, X.; Greck, C. *J. Org. Chem.* **2009**, 75, 5312–5315; (f) Liu, P.-M.; Chang, C.; Reddy, R.-J.; Ting, Y.-F.; Kuan, H.-H.; Chen, K. *Eur. J. Org. Chem.* **2010**, 5705–5713.

- (a) Vogt, H.; Vanderheiden, S.; Bräse, S. *Chem. Commun.* 2003, 2448–2449; (b) Baumann, T.; Vogt, H.; Bräse, S. *Eur. J. Org. Chem.* 2007, 266–282; (c) Baumann, T.; Bächle, M.; Hartmann, C.; Bräse, S. *Eur. J. Org. Chem.* 2008, 2207–2212; During the preparation of this manuscript, two publications have appeared: (d) Liu, C.; Zhu, Q.; Huang, K.-W.; Lu, Y. *Org. Lett.* 2011, *12*, 2638–2641; (e) Fu, J.-Y.; Yang, Q.-C.; Wang, Q.-L.; Ming, J.-N.; Wang, F.-Y.; Xu, X.-Y.; Wang, L.-X. J. Org. *Chem.* 2011, *76*, 4661–4664.
- 4. Chowdari, N. S.; Barbas, C. F., III Org. Lett. 2005, 7, 867-870.
- 5. Suri, J. T.; Steiner, D. D.; Barbas, C. F., III Org. Lett. 2005, 7, 3885-3888.
- Fu, J.-Y.; Xu, X.-Y.; Li, Y.-C.; Huang, Q.-C.; Wang, L.-X. Org. Biomol. Chem. 2010, 8, 4524–4526.
- 7. Galzerano, P.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7892–7894.
- Desmarchelier, A.; Marrot, J.; Moreau, X.; Greck, C. Org. Biomol. Chem. 2011, 9, 994–997.
- 9. General procedure for the organocatalytic α -amination: aldehyde (0.6 mmol), azodicarboxylate (0.5 mmol), primary amine catalyst (5 mol %), TFA (15 mol %) in CHCl₃ (1 mL) were stirred at room temperature until the completion of the reaction (monitored by TLC). Solvent was removed in vacuo and the residue was purified by flash chromatography (pentane/Et₂O) to yield the desired product.

The reaction has been scaled up 10-fold for the synthesis of (S)-ethyl phenylglycine methyl ester **8** without changes in the procedure.

- For recent general reviews dealing with syntheses of α,α-dialkyl-α-aminoacids, see: (a) Soloshonok, V. A.; Sorochinsky, A. E. Synthesis **2010**, 2319–2344; (b) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asymmetry **2007**, *18*, 569–623; (c) Vogt, H.; Bräse, S. Org. Biomol. Chem. **2007**, *5*, 406–430.
- Garbarino, J. A.; Sierra, J.; Tapia, R. J. Chem. Soc., Perkin Trans. 1 1973, 1866– 1869
 - Compound **8**: $[\alpha]_D^{25}$ +13,0 (*c* 1; CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ : 7.48–7.53 (m, 2H), 7.25–7.38 (m, 3H), 3.72 (s, 3H), 2.15–2.27 (m, 3H), 1.99–2.11 (m, 1H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 176.2, 143.0, 128.5, 127.5, 125.6, 64.3, 52.6, 32.8, 8.5; IR υ (cm⁻¹): 3385, 3317, 2952, 1731, 1447, 1228; HRMS. Anal. calcd for C₁₁H₁₆NO₂ [M⁺H⁺]: 194.1181. Found: 194.1184.