T. Yamashiro et al.

Letter

Silver-Mediated Intramolecular Friedel–Crafts-Type Cyclizations of 2-Benzyloxy-3-bromoindolines: Synthesis of Isochromeno[3,4-b] indolines and 3-Arylindoles

Α

Toshiki Yamashiro Koji Yamada* Haruka Yoshida Yutaro Tomisaka Takahide Nishi Takumi Abe*[®]

Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 061-0293, Japan kyamada@hoku-iryo-u.ac.jp abe-t@hoku-iryo-u.ac.jp

Received: 25.09.2019 Accepted after revision: 15.10.2019 Published online: 05.11.2019 DOI: 10.1055/s-0039-1690734; Art ID: st-2019-u0508-l

Abstract We disclose a silver-mediated intramolecular Friedel–Craftstype cyclization of 2-benzyloxy-3-bromoindolines to afford an untapped family of isochromeno[3,4-*b*]indolines and 3-arylindoles, in which deformylative arylation of 2-(4-methoxybenzyloxy)-3-bromoindolines is reported for the first time. The isochromeno[3,4-*b*]indolines can be readily transformed into other heterocyclic moieties.

Key words Friedel–Crafts, cyclization, isochromeno[3,4-*b*]indolines, deformylative arylation, 3-arylindoles, silver

Chromenoindolines and isochromenoindolines form an important group of pharmacologically active compounds displaying, for example, antimalarial activity,¹ anticancer activity,² antiplasmodial activity toward the chloroquine-resistant strain FcB1 of *Plasmodium falciparum*,³ cytotoxicity against KB, L1210 cells,⁴ and vincristine resistant human KB (Figure 1).⁵ Recently, many useful approaches to chromeno[2,3-*b*]indolines have been explored to develop more potent biologically active compounds.⁶ On the other hand, the synthesis of isochromeno[3,4-*b*]indolines has scarcely developed until recently because of their complex structures including 3-arylindolines.⁷

In 2017, Vincent and co-workers reported a silver-mediated oxidative coupling of indoles and tetrahydro- β -carbolines with 2,3-dihydroxybenzoic acids for the construction of isochromeno[3,4-*b*]indolines, affording the total synthesis of voacalgine A and bipleiophylline (Scheme 1A).⁸

As a catalytic version of the oxidative coupling, Chen and co-workers developed the Fe-mediated oxidative cou-

Figure 1 Selected chromenoindolines and isochromenoindolines alkaloids

pling of indoles with 2,3-dihydroxybenzoic acids (Scheme 1B).⁹ These reactions require 2,3-disubstituted or 3-substituted indoles and 2,3-dihydroxybenzoic acids due to the formation of an orthoquinone intermediate.

Apparently, these features restricted the access to various substituted isochromeno[3,4-*b*]indolines. Accordingly, the synthesis of isochromeno[3,4-*b*]indolines remains unexploited using these reactions and simple starting materials.

As part of our ongoing investigations focused on the indole chemistry,¹⁰ we were eager to tackle the challenges of exploring a concise construction of isochromeno[3,4-*b*]indolines bearing a variety of substituents because it could lead to pharmacologically active compounds. Recently, we

Synlett

T. Yamashiro et al.

۸

В

Scheme 1 Previous work on the synthesis of isochromeno[3,4-b]indolines

have developed a direct C4 benzylation of indoles utilizing 2-benzyloxyindoles, affording 4-benzyl-2-oxindoles (Scheme 1C).¹¹ This reaction involves the formation of isotoluene intermediates in situ via a benzyl Claisen rearrangement, which undergo Cope rearrangement and aromatization (Scheme 1C, path b). In these investigations, we concluded that the initially expected isochromeno[3.4-blindoles could not be obtained through the isotoluene intermediate followed by cyclization (Scheme 1C, path a). The failure of the benzyl Claisen rearrangement/cyclization protocol to construct chromeno[3,4-b]indole structures led us to study a silver-mediated Friedel-Crafts-type cyclization of 3-bromoindolines.

It is well known that the halogenophilicity of the silver salts toward Csp³-halogen bonds can enable mild activation and high functional group compatibility in the intermolecular Friedel-Crafts reaction of 3-haloindolines with nucleophiles, as reported by Movassaghi,¹² Qin,¹³ Ye,¹⁴ Vincent,¹⁵ and Tokuyama.¹⁶ We envisioned that a silver-mediated intramolecular Friedel-Crafts-type cyclization of 2-benzyloxy-3-bromoindolines would allow access to isochromeno[3,4-b]indolines. Herein, we describe a novel construction of isochromeno[3,4-b]indolines by a silver-mediated Friedel-Crafts-type cyclization of easily available starting materials (Scheme 1D, path a). An electron-donating group on the benzyl moiety was shown to alter the normal reactivity of the Friedel-Crafts-type cyclization, affording 3-

Та

Table 1 Reaction Condition Optimization ^a				
	Br N Ts 1aa	[Ag] solvent, time, rt	H N H Ts Zaa	
Entry	Ag (equiv)	Solvent (mL)	Time (h)	Yield (%) ^b
1	Ag ₂ O (5)	EtOAc (5)	0.5	62
2	Ag ₂ O (5)	$CF_{3}C_{6}H_{5}(5)$	3	60
3	Ag ₂ O (5)	toluene (5)	48	62
4	Ag ₂ O (5)	MeCN (5)	48	21
5	Ag ₂ O (5)	$CHCl_3$ (5)	0.5	42
6	Ag ₂ O (5)	TFE (5)	1	66
7	Ag ₂ O (5)	MeNO ₂ (5)	0.5	85
8	Ag_2CO_3 (5)	$MeNO_2(5)$	1	77
9	AgNTf ₂ (5)	$MeNO_2(5)$	2	0
10	AgCN (5)	$MeNO_2(5)$	24	29
11	AgOTf (5)	$MeNO_2(5)$	1	0
12	$AgPF_{6}(5)$	$MeNO_2(5)$	0.5	36
13	Ag ₂ O (5)	$MeNO_2(2)$	0.5	86
14	Ag ₂ O (3)	$MeNO_2(2)$	2	85
15	Ag₂O (1.5)	MeNO ₂ (2)	2	85
16	Ag ₂ O (0.5)	$MeNO_2(2)$	24	45
17	-	$MeNO_2(2)$	24	0
a Departien conditioner 1-2 (0.2 mmal) As a structure at				

Reaction conditions: 1aa (0.2 mmol), Ag salt, solvent, r.t.

^b Isolated yields.

^c Complex mixtures.

Letter

arylindoles via an unprecedented *ipso*-attack on the benzene ring/deformylative arylation sequences (Scheme 1D, path b).

T. Yamashiro et al.

Svnlett

Initially, the reaction was carried out using *N*-Ts 2-benzyloxy-3-bromoindoline (**1aa**)¹¹ and 5 equiv of Ag₂O in EtO-Ac at room temperature. As expected, the reaction proceeded smoothly to afford isochromeno[3,4-*b*]indoline **2aa** in 62% yield (Table 1, entry 1). To improve the yield of **2aa**, optimization of the protocol by replacing Ag₂O with other silver salts, replacing EtOAc with other solvents, and modulating the equivalent of silver salts and the solvent concentration was conducted. The most efficient solvent was MeNO₂ (entries 1–7). Ag₂O was the best silver salt for the transformation (entry 7), while all other silver salts studied, such as Ag₂CO₃, AgNTf₂, AgNO₃, AgOTf, and AgPF₆, gave lower yields (entries 8–12). Finally, when 1.5 equivalent of Ag_2O was used in MeNO₂ (0.1 M), good conversion into **2aa** was observed (entries 13–16). A control experiment without the silver salt did not give product **2aa** (entry 17).

With the optimized conditions identified, the scope of the reaction was investigated by using a variety of 2-benzyloxy-3-bromoindolines **1** (Scheme 2). In general, a diverse range of substrates **1** were successfully used to afford isochromeno[3,4-*b*]indolines **2** up to 95% yield, although the electronic nature of the substituents on the benzene-ring at **1** had an influence on the reaction efficiency. An electrondonating group on the indole ring was not fully tolerated in the Friedel–Crafts-type process (**2ba**, **2bc** and **2bd**), while electron-withdrawing groups were compatible (**2ca**, **2cc**, **2cd**, **2da**, **2ea**, and **2fa**). Specifically, substrates with chloro

Scheme 2 Substrate scope of silver-mediated Friedel–Crafts-type cyclization of 2-benzyloxy-3-bromoindolines. *Reagents and conditions*: **1** (0.2 mmol) and Ag₂O (0.3 mmol, 1.5 equiv) in MeNO₂ (2 mL) at r.t. (isolated yields given). ^a Ag₂O (1.0 mmol, 5 equiv) was used.

D

T. Yamashiro et al.

or bromo substituents were tolerated in the silver-mediated transformation. The halogen functional group allowed further synthetic manipulations of the products through transition-metal-catalyzed cross-couplings. A 4-methoxy group on the benzyl moiety has been shown to alter the normal reactivity of the Friedel–Crafts-type cyclization, affording 3-arylindoles **3** with release of HCHO (**3ab**, **3bb**, **3cb**, **3db**, **3eb**, **3fb**, and **3ah**).

Notably, a reverse regioselectivity was observed (**2ag**, *ortho*-attack) when a 3-methoxy substrate **1ag** was used. These results suggest that the *para*- or *ortho*-position to the CH₂O-group reacted to afford the arylated products **3** in this transformation. The deformylative arylation has been scarcely reported to date¹⁷ in contrast to the decarboxyl-ative arylation.^{18,19} To our knowledge, this is the first example of an arylation using benzyl ethers as the arylating reagent. Such 3-arylindoles are of great interest because of their intriguing biological activities.²⁰

To further show the synthetic use of this transformation, we conducted a 2.4 mmol (**1aa**, 1.1 g) scale reaction (Scheme 3). The gram-scale reaction afforded the desired product **2aa** in 85% yield and the cyclization was as efficient as the 0.2 mmol scale reaction (**2aa**: 85% yield, Scheme 2).

Encouraged by the applicability for the gram-scale reaction, we further explored the synthetic utility of **2aa** in organic synthesis (Scheme 4). The tosyl group of **2aa** could be readily removed upon treatment with Mg powder in methanol under reflux conditions, to give 3-aryllindole **4** in 82% yield. 2-Indolyl benzyl alcohols are utilized as intermediates for electroluminescent hosts.²¹ Treatment of **2aa** with HBr or HBF₄ led to the formation of **5** or **6** via a ring-opening reaction. Among the acids investigated, BF₃·OEt₂ afforded dihydroindeno[2,1-*b*]indole **7** in 52% yield through a ringopening reaction and dehydrative cyclization.

Based on the results presented in Scheme 2 and on previous reports,^{22,23} we propose a plausible reaction pathway and deformylation mode to explain the chemistry of the deformylative arylation of **1ab** (Scheme 5). Initially, **1ab** should give carbocation intermediate **A** upon reaction with the silver complex. In pathway (a), *ortho*-attack by the 4-MeO-benzyl moiety to the carbocation may occur to afford **2ab**. In pathway (b), *ipso*-attack by the 4-MeO-benzyl moiety to the carbocation may afford arenium intermediate **B**.²² Then, to restore the original aromatic structure, this 1,1-

Scheme 4 Synthetic elaborations of compound 2aa

aminoether (hemiaminal) **B** undergoes deformylation with the aid of the indole nitrogen to give the 3-arylated product **3ab** through aromatization of indolenium intermediate **C**.²³ Given that the yield of **2ab** is 0%, the substrate **1ab** preferentially favors intermediate **B** due to the stabilization of the arenium intermediate **B** by the methoxy group. Thus, the *ipso*-attack of the intermediate **A** occurs regiospecifically, which generates the intermediate **B** and produces product **3ab**.

Scheme 5 Plausible mechanism

In summary, we achieved a silver-mediated intramolecular Friedel–Crafts-type cyclization of 2-benzyloxy-3-bromoindolines via the generation of benzyl cation intermediates. This is the first example of a construction of isochromeno[3,4-*b*]indolines without using 2-hydroxybenzoic acids as a substrate. This protocol exhibits a wide substrate scope and proceeds under mild conditions. Furthermore, as a demonstration of the synthetic potential of this protocol, the derivatization of isochromeno[3,4-*b*]indolines was carried out. On the other hand, a methoxy group on the benzyl moiety has been shown to alter the normal reactivity of the

Ε

T. Yamashiro et al.

Friedel–Crafts-type cyclization, affording 3-arylindoles via an unprecedented *ipso*-attack on the benzene ring/deformylative arylation sequences. Future efforts will focus on the intermolecular Friedel–Crafts-type cyclization and on the development of an enantioselective variant of the reaction.

Funding Information

This work was financially supported by a Grant-in-Aid for Young Scientists (B) (Grant No. 16K18849 for T. A.) from the Japan Society for the Promotion of Science (JSPS).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690734.

References and Notes

- (1) Ryder, S. WO 2010151799A2, **2010**.
- (2) Goldfarb, D. S. US 20090163545A1, 2009.
- (3) (a) Beniddir, M. A.; Martin, M.-T.; Dau, M.-E. T. H.; Grellier, P.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M. Org. Lett. 2012, 14, 4162. (b) Beniddir, M. A.; Martin, M.-T.; Dau, M.-E. T. H.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M. Tetrahedron Lett. 2013, 54, 2115.
- (4) Momose, R.; Tanaka, N.; Fromont, J.; Kobayashi, J. Org. Lett. 2013, 15, 2010.
- (5) (a) Kam, T.-S.; Tan, S.-J.; Ng, S.-W.; Komiyama, K. Org. Lett. 2008, 10, 3749. (b) Hirasawa, Y.; Arai, H.; Rahman, A.; Kusumawati, I.; Zaini, N. C.; Shirota, O.; Morita, H. Tetrahedron 2013, 69, 10869.
- (6) For selected examples, see: (a) Abramovitch, R. A.; Hey, D. H. J. Chem. Soc. 1954, 1697. (b) Eiden, F.; Dobinsky, H. Synthesis 1970, 365. (c) Engqvist, R.; Bergman, J. Tetrahedron 2003, 59, 9649. (d) Loewe, W.; Witzel, S.; Tappmeyer, S.; Albuschat, R. J. Heterocycl. Chem. 2004, 41, 317. (e) Peng, W.; Switalska, M.; Wang, L.; Mei, Z.-W.; Edazawa, Y.; Pang, C.-Q.; El-Sayed, I. E.; Wietrzyk, J.; Inokuchi, T. Eur. J. Med. Chem. 2012, 58, 441. (f) Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem. Int. Ed. 2012, 51, 12546. (g) Gráczol-Fördös, E. E.; Novák, T.; Blaskó, G.; Fejes, I.; Perron-Siera, F.; Nyerges, M. Heterocycles 2013, 87, 2053. (h) Deb, M. L.; Pegu, C. D.; Deka, B.; Dutta, P.; Kotmale, A. S.; Baruah, P. K. Eur. J. Org. Chem. 2016, 3441. (i) Liu, J.; Liu, N.; Yue, Y.; Wang, Y.; Chen, K.; Zhang, J.; Zhao, S.; Zhuo, K. Chem. Asian J. 2017, 12, 401. (j) Challa, C.; Ravindran, J.; Konai, M. M.; Varughese, S.; Jacob, J.; Kumar, B. S. D.; Halder, J.; Lankalapalli, R. S. ACS Omega 2017, 2, 5187. (k) Abe, T.; Haruyama, T.; Yamada, K. Synthesis 2017, 49, 4141. (1) Miao, C.-B.; Sun, Y.-F.; Wu, H.; Sun, X.-O.; Yang, H.-T. Adv. Synth. Catal. 2018, 360, 2440. (m) Rong, G.-Q.; Zhao, J.-Q.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C.; Zhou, M.-Q. Tetrahedron 2018, 74, 2383.
- (7) For a review on 3-arylated indoline, see: Denizot, N.; Tomakinson, T.; Beaud, R.; Kouklovsky, C.; Vincent, G. Tetrahedron 2015, 56, 4413.
- (8) (a) The structure of voacalgine A was revised by Vincent and coworkers, see: Lachkar, D.; Denizot, N.; Bernadat, G.; Ahamada, K.; Beniddir, M. A.; Dumontet, V.; Gallard, J.-F.; Guillot, R.; Leblanc, K.; N'nang, E. O.; Turpin, V.; Kouklovsky, C.; Poupon, E.;

Evanno, L.; Vincent, G. *Nat. Chem.* **2017**, *9*, 793. (b) Denizot, N.; Lachkar, D.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. *Synthesis* **2018**, *50*, 4229.

- (9) Ye, J.; Lin, Y.; Liu, Q.; Xu, D.; Wu, F.; Liu, B.; Gao, Y.; Chen, H. Org. Lett. 2018, 20, 5457.
- (10) (a) Abe, T.; Yamada, K. Org. Lett. 2016, 18, 6504. (b) Abe, T.; Yamada, K. J. Nat. Prod. 2017, 80, 241. (c) Abe, T.; Takahashi, Y.; Matsubara, Y.; Yamada, K. Org. Chem. Front. 2017, 4, 2124. (d) Abe, T.; Suzuki, T.; Anada, M.; Matsunaga, S.; Yamada, K. Org. Lett. 2017, 19, 4275. (e) Abe, T.; Yamada, K. Org. Lett. 2018, 20, 1469. (f) Abe, T.; Shimizu, H.; Takada, S.; Tanaka, T.; Yoshikawa, M.; Yamada, K. Org. Lett. 2018, 20, 1589. (g) Abe, T.; Satake, S.; Yamada, K. Heterocycles 2019, 99, 379. (h) Itoh, T.; Chiba, Y.; Kawaguchi, S.; Koitaya, Y.; Yoneta, Y.; Yamada, K.; Abe, T. RSC Adv. 2019, 9, 10420. (i) Abe, T.; Aoyama, S.; Ohmura, M.; Taniguchi, M.; Yamada, K. Org. Lett. 2019, 21, 3367.
- (11) Abe, T.; Kosaka, Y.; Asano, M.; Harasawa, N.; Mishina, A.; Nagasue, M.; Sugimoto, Y.; Katakawa, K.; Sueki, S.; Anada, M.; Yamada, K. Org. Lett. **2019**, *21*, 826.
- (12) (a) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 14940.
 (b) Boyer, N.; Movassaghi, M. Chem. Sci. 2012, 3, 1798. (c) Boyer, N.; Morrison, K. C.; Kim, J.; Hergenrother, P. J.; Movassaghi, M. Chem. Sci. 2013, 4, 1646. (d) Coste, A.; Kim, J.; Adams, T. C.; Movassaghi, M. Chem. Sci. 2013, 4, 3191. (e) Adams, T. C.; Payette, J. N.; Cheah, J. H.; Movassaghi, M. Org. Lett. 2015, 17, 4268. (f) Loach, R. P.; Fenton, O. S.; Movassaghi, M. J. Am. Chem. Soc. 2016, 138, 1057.
- (13) Wang, Y.; Kong, C.; Du, Y.; Song, H.; Zhang, D.; Qin, Y. Org. *Biomol. Chem.* **2012**, *10*, 2793.
- (14) Lei, H.; Wang, L.; Xu, Z.; Ye, T. Org. Lett. 2017, 19, 5134.
- (15) (a) Denizot, N.; Pouilhés, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2014, 16, 5752. (b) Denizot, N.; Guillot, R.; Kouklovsky, C.; Vincent, G. Chem. Eur. J. 2015, 21, 18953.
- (16) (a) Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Synlett 2007, 3137. (b) Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. Ed. 2009, 48, 7600. (c) Satoh, H.; Ojima, K.; Ueda, H.; Tokuyama, H. Angew. Chem. Int. Ed. 2016, 55, 15157. (d) Sato, S.; Hirama, A.; Ueda, H.; Tokuyama, H. Asian J. Org. Chem. 2017, 6, 54. (e) Sato, S.; Hirama, A.; Adachi, T.; Kawauchi, D.; Ueda, H.; Tokuyama, H. Heterocycles 2017, 94, 1940. (f) Hakamata, H.; Sato, S.; Ueda, H.; Tokuyama, H. Org. Lett. 2017, 19, 5308. (g) Hakamata, H.; Ueda, H.; Tokuyama, H. Org. Lett. 2019, 21, 4205.
- (17) (a) Hayashi, M.; Matsuura, T.; Tanaka, I.; Ohta, H.; Watanabe, Y. Org. Lett. 2013, 15, 628. (b) Rao, M. L. N.; Ramakrishna, B. S. J. Org. Chem. 2019, 84, 5677. (c) Guo, L.; Srimontree, W.; Zhu, C.; Maity, B.; Liu, X.; Cavallo, L.; Rueping, M. Nat. Commun. 2019, 10, 1957.
- (18) For recent reviews, see: (a) Rodíguez, N.; Goossen, L. J. *Chem.* Soc. Rev. 2011, 40, 5030. (b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. *Chem. Rev.* 2017, 117, 8864. (c) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warrantz, S.; Ackermann, L. *Chem. Rev.* 2019, 119, 2192.
- (19) For selected examples, see: (a) Goosen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662. (b) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194. (c) Chen, L.; Ju, L.; Bustin, K. A.; Hoover, J. M. Chem. Commun. 2015, 51, 15059. (d) Honevcutt, A. P.; Hoover, J. M. ACS Catal. 2017, 7, 4597.
- (20) Selected examples, see: (a) Hu, W.; Guo, Z.; Yi, X.; Guo, C.; Chu, F.; Cheng, G. Bioorg. Med. Chem. 2003, 11, 5539. (b) Güzel, Ö.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A. T.; Supuran, C. T. J. Med. Chem. 2009, 52, 4063. (c) Richardson, T. I.; Clarke, C.

Synlett

Letter

- A.; Yu, K.-L.; Yee, Y. K.; Bleisch, T. J.; Lopez, J. E.; Jones, S. A.; Hughes, N. E.; Muehl, B. S.; Lugar, C. W.; Moore, T. L.; Shetler, P. K.; Zink, R. W.; Osborne, J. J.; Montrose-Rafizadeh, C.; Patel, N.; Geiser, A. G.; Galvin, R. J. S.; Dodge, J. A. ACS Med. Chem. Lett. **2011**, *2*, 148. (d) El-Sayed, N. S.; Shirazi, A. N.; El-Meligy, G.; El-Ziaty, A. K.; Rowley, D.; Sun, J.; Nagib, Z. A.; Parang, K. Tetrahedron Lett. **2014**, *55*, 1154. (e) Gattu, R.; Bhattacharjee, S.; Mahato, K.; Khan, A. T. Org. Biomol. Chem. **2018**, *16*, 3760.
- (21) Ham, H. W.; Kimm, B. G.; An, H. C.; Kim, D. J.; Han, J. W.; Kim, G. T.; Lee, H. J.; Lim, D. W.; Kim, S. H. A. WO 2014-KR11227, **2015**.
- (22) Li, J.; Bauer, A.; Di Mauro, G.; Maulide, N. *Angew. Chem. Int. Ed.* **2019**, *58*, 9816.
- (23) For an example of deformylation of 1,2-aminoalcohols, see: Liu, X.; Phan, J. H.; Haugeberg, B. J.; Londhe, S. S.; Clift, M. D. *Beilstein J. Org. Chem.* **2017**, *13*, 2895.