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ABSTRACT

The rhodium-catalyzed oxidative acylation between secondary benzamides and aryl aldehydes via sp2 C�H bond activation followed by an
intramolecular cyclization is described. This method results in the direct and efficient synthesis of 3-hydroxyisoindolin-1-one building blocks.

3-Hydroxyisoindolin-1-ones are ubiquitous structural
motifs in anumberof synthetic andnaturallyoccurringbio-
active compounds, such as the synthetic diuretic and anti-
hypertensive agent chlorthalidone,1 the natural product
isoquinoline fumadensine,2 and isoindolobenzazepine
chilenine,3 and a synthetic antibacterial compound.4 3-
Hydroxyisoindolin-1-ones are conventionally synthesized
by the site-selective addition of organometallic reagents or
other nucleophilic agents to phthalimide derivatives.5 The
condensation of pseudo acid chlorides (Ψ-acid chlorides)

with amines provides an efficient protocol for the synthesis
of 3-hydroxyisoindolin-1-ones.6 Friedel�Crafts acylation
of compounds containing secondary amide moieties with
carboxylic acid derivatives (e.g., acid chlorides) followedby
intramolecular cyclization has also been reported.7 Re-
cently, Liu et al. described a tandem transformation for
the construction of 3-hydroxyisoindolin-1-ones from o-
(substituted ethynyl)benzoic acids and primary amines
using a phase transfer catalyst.8 However, from a syn-
thetic point of view, these approaches have intrinsic draw-
backs, which include strict handling requirements for the
organometallic reagent (e.g.,Grignard reagents), poor func-
tional group tolerance, harsh reaction conditions, and the
need for prefunctionalization of the coupling partners.
Therefore, it is highly desirable to develop novel and ef-
ficient protocols that involve fewer synthetic steps and
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readily available starting materials for the synthesis of 3-
hydroxyisoindolin-1-ones.

Transition-metal-catalyzed C�H bond functionaliza-
tions have emerged as powerful tools in organic synthesis,
since such methods avoid the necessity of multistep pre-
paration of preactivated starting materials and lead to an
improved overall efficiency of the desired transformation.9

In particular, the combination of transition metals and
directing groups is a useful strategy for facilitating C�H
bond cleavage10 and has provided valuable conversions of
C�H bonds to C�X (X= carbon,11 oxygen,12 nitogen,13

and halogen14) bonds. Recently, remarkable progress has
been made in the transition-metal-catalyzed oxidative cou-
pling of two different aryl C�H bonds for the construction
of arene�arene linkages.15 However, cross-coupling reac-
tions between aryl C�H and aldehyde C�H bonds to form
corresponding aryl ketones remain relatively unexplored.16

Cheng et al. described a palladium-catalyzed cross-coupling
reaction of aromatic compounds containing a pyridine
directing group and aldehydes to afford aryl ketones.16a Li
and co-workers reported the palladium-catalyzed sp2�sp2

coupling of 2-phenylpyridine with aliphatic aldehydes.16b

Deng and Li demonstrated a palladium-catalyzed oxidative
acylation reaction of 2-arylpyridines and alcohols in the pre-
sence of tert-butyl hydroperoxide as an oxidant.16c Li and
Kwong also reported a palladium-catalyzed oxidative cou-
pling of acetanilides and aldehydes to provide ortho-acyl
acetanilides.16dRecently, we described the rhodium-catalyzed
oxidative acylation of tertiary benzamides and aldehydes to
afford aryl ketones (Scheme 1).17

As part of an ongoing research programdirected toward
the development of transition-metal-catalyzed carbon�
carbon bond forming reactions,18 we became interested
in developing an efficient synthetic route to 3-hydroxy-
isoindolin-1-ones from secondary benzamides and alde-
hydes via C�H bond activation followed by amino-
cyclization. In this paper, we report the rhodium-catalyzed
regioselective ortho-acylation and intramolecular cyclization
sequence in the presence of silver carbonate as an oxidant to
prepare 3-hydroxyisoindolin-1-ones in good to high yields.
We initiated our investigation by exploring the coupling

of a variety of N-substituted benzamides (1a�h) with
4-(trifluoromethyl)-benzaldehyde (2a); selected results are
summarized in Table 1. The cationic rhodium complex
derived from [Cp*RhCl2]2 and AgSbF6 catalyzed the cou-
plingofN-methylbenzamide (1a) andaryl aldehyde2a in the
presence of Ag2CO3 as an oxidant to yield compound 3a in
34% yield (Table 1, entry 1). Further screening ofN-mono-
substituted amides indicated that N-isopropyl benzamide
(1b) was the most effective in affording the 3-hydroxyiso-
indolin-1-one 3b, as shown in entries 2�8.However, the use
of other oxidants, such as AgOAc, K2S2O8, benzoquinone,
and t-BuO2H,was relatively ineffective in the coupling of 1b
and 2a (Table 1, entries 9�12). A screening of solvents re-
vealed that the best yield was obtained with THF and that
other oxygen-containing solvents, such as 1,4-dioxane and
THP, were less effective (Table 1, entries 13 and 14). After
further optimization, the best results were obtained by
increasing the amount of Ag2CO3 (300 mol %) and
the reaction temperature (150 �C) to afford the desired
3-hydroxyisoindolin-1-one 3b in 83%yield, as shown in
entry 16.
Having established the optimized reaction conditions,

the substrate scope was examined with respect to the
aldehyde (Scheme 2). The coupling of benzamide 1b and
aldehydes 2i�m with para- or meta-substituted electron-
withdrawing groups afforded the corresponding products
3i�m in moderate to high yields. This reaction was also
compatible with halogen-substituted aldehydes 2n�p fur-
nishing the corresponding products 3n�p in good yields.
Particularly noteworthy was the tolerance of the reaction
conditions to chloro and bromo groups, which provide a
versatile synthetic handle for further functionalization of
the products. In addition, 2-naphthaldehyde 2q and benz-
aldehyde 2r also smoothly underwent reaction to gener-
ate the corresponding products 3q and 3r, respectively.

Scheme 1. Transition-Metal-Catalyzed Oxidative Acylation
and Intramolecular Cyclization
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In contrast, electron-rich aldehyde 2s was less reactive
under the reaction conditions presumably due to the
difficulty of metal insertion into the aldehyde C�H
bond.19

Couplings with a variety of benzamides 1i�r and alde-
hyde 2a under identical reaction conditions were examined
to further explore the substrate scope and limitations of
this process (Scheme 3). Electron-neutral and -donating
benzamides 1i�m were readily converted to the corre-
sponding products 4i�m. In particular, the reaction of
benzamides 1j�m with a meta-substituent preferentially
occurred at themore sterically accessible position. In addi-
tion, benzamides 1n�pwith halogen groups (Br and Cl)
in the para- or meta-positions were found to be favor-
able in the reaction and provided products which would
be amenable to further cross-coupling reactions. How-
ever, ortho-substituted benzamides 1q and 1r showed
relatively decreased reactivity since coplanar confor-
mation between the aromatic ring and the amidemoiety
was not available.
Encouraged by these results, we further examined the

influence of both the acetamido and N-isopropyl amide

directing groups such as in compound 1s, as shown in
Scheme 4. Unfortunately, the Pd-catalyzed oxidative acyl-
ation conditions reported by Li and Kwong did not yield
ortho-acyl acetanilide from the coupling of acetanilide 1s
with aldehyde 2a.16d However, compound 1s under our
optimal reaction conditionswas converted to the 3-hydroxy-
isoindolin-1-one 4s with excellent regioselectivity in 48%
yield. Thus, Rh catalysis could provide efficient regioselec-
tivity in the C�H bond functionalization reaction.
To probe the catalytic mechanism, we carried out a

competition experiment between equimolar amounts of
deuterio-1b and benzamides 1bwith aldehyde 2i under our
standard conditions for 10 min, which results in the
intermolecular kinetic isotope effect (kH/kD) of 1.1
(Scheme 5). Interestingly, the reaction of deuterio-1b
with aldehyde 2i in THF (condition A) provided sig-
nificant deuterium loss (27%D) at the ortho-position of
deuterio-3i as well as partial deuteration (10%D) of the
internal sp3 C�H bond of the isopropyl group. In
addition, the use of either condition B (2i-d1 in THF)
or condition C (2i-d1 in THF-d8) afforded isotope
results very similar to those obtained through the use
of condition A. These results may arise from a fast
and reversible metalation�proto(deutero)demetala-
tion step of deuterio-1b prior to the cross-coupling reaction

Table 1. Selected Optimization of the Reaction Conditionsa

entry R3 benzamide oxidant solvent

yield

(%)b

1 methyl 1a Ag2CO3 THF 34

2 isopropyl 1b Ag2CO3 THF 64

3 isobutyl 1c Ag2CO3 THF 48

4 tert-butyl 1d Ag2CO3 THF 23

5 benzyl 1e Ag2CO3 THF 35

6 phenyl 1f Ag2CO3 THF 12

7 methoxy 1g Ag2CO3 THF 0

8 tosyl 1h Ag2CO3 THF 0

9 isopropyl 1b AgOAc THF 0

10 isopropyl 1b K2S2O8 THF 0

11 isopropyl 1b benzoquinone THF 18

12 isopropyl 1b t-BuO2H THF 0

13 isopropyl 1b Ag2CO3 1,4-

dioxane

19

14c isopropyl 1b Ag2CO3 THP 40

15d isopropyl 1b Ag2CO3 THF 72

16e isopropyl 1b Ag2CO3 THF 83

aReaction conditions: 1a�h (0.3mmol), 2a (0.6mmol), [Cp*RhCl2]2
(5 mol %), AgSbF6 (20 mol %), oxidant (0.6 mmol), solvent (1 mL) at
110 �C for 20 h underN2 in 13� 100mm2 pressure tubes. bYield isolated
by column chromatography. cTHP = tetrahydropyrane. dAg2CO3

(0.9 mmol) was used. e 150 �C.

Scheme 2. Scope of Aldehydesa

aReaction conditions: 1b (0.3 mmol), aldehydes 2a and 2i�s

(0.6 mmol), [Cp*RhCl2]2 (5 mol %), AgSbF6 (20 mol %), Ag2CO3

(0.9 mmol), THF (1 mL) at 150 �C for 20 h under N2 in 13 � 100 mm2

pressure tubes. bYield isolated by column chromatography.
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with aldehyde 2i or 2i-d1.
20 Partial deuteration (8% D) of

the aromatic ring sp2 C�H bond may be the result of a

reversible protonation�deuteration step of the aryl ketone
intermediate obtained from the oxidative acylation re-
action. To gain insight into the catalytic pathway, we
again conducted a competition reaction between equi-
molar amounts of electron-deficient aldehyde 2i and
electron-rich aldehyde 2s with benzamide 1b for 1 h,
affording about 2.5 times more 3i than 3s. Thus, it
seems that the insertion of aldehyde to a cyclo-rhodated
intermediate is most likely involved in the rate-limiting
step of this transformation (see Supporting Informa-
tion for plausible reaction mechanism).
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Scheme 3. Scope of Benzamidesa

aReaction conditions: benzamide 1i�r (0.3 mmol), 2a (0.6 mmol),
[Cp*RhCl2]2 (5 mol%), AgSbF6 (20 mol%), Ag2CO3 (0.9 mmol), THF
(1 mL) at 150 �C for 20 h under N2 in 13 � 100 mm2 pressure tubes.
bYield isolated by column chromatography.

Scheme 4. Regioselectivity of Pd vs Rh

aReaction conditions: 1s (0.3 mmol), 2a (0.6 mmol), [Cp*RhCl2]2
(5 mol %), AgSbF6 (20 mol %), Ag2CO3 (0.9 mmol), THF (0.3 M) at
150 �C for 20 h. bReaction conditions: 1s (0.3 mmol), 2a (0.6 mmol),
Pd(TFA)2 (5mol%), tert-butyl hydroperoxide (1.2mmol), toluene (0.5M)
at 90 �C for 18 h.

Scheme 5. Mechanistic Studies
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