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ABSTRACT: Domino catalysis is a well-explored route to increasing the efficiency of multistep reactions. However, the kinetic 
features required for efficient turnover of a process where “multiple transformations are effected by a single catalytic mechanism” 
have not been explored in any detail. The kinetics of a nominally simple two-stage domino catalytic reaction have been analyzed by 
way of a gold-catalyzed coupling of two electron-deficient arylsilanes to generate an arylated fluorene. A combination of in situ 
interleaved 1H and 19F NMR spectroscopic kinetic measurements, kinetic simulations, and variations in substitution, reveal how the 
catalyst partitioning between the two different cycles impacts on both the rate and selectivity of the process. The insight enables 
identification that sequential catalyst speciation and accumulation of the domino intermediate are general kinetic criteria for efficient 
domino catalysis.

Introduction
Efficiency and selectivity lie at the heart of modern synthetic 

chemistry.1-3 In this context, ‘domino’4,5  and 'tandem'5,6 
catalyses, in which two or more discrete bond-forming steps 
take place under the same conditions, provide valuable 
increases in the net efficiency per unit-operation.3 Fogg and dos 
Santos distinguish domino processes, Scheme 1, as those 
adhering to Tietze’s original definition4 but where “multiple 
transformations are effected by a single catalytic mechanism”.5 
Conversely, tandem catalysis denotes “coupled catalyses in 
which sequential transformation of the substrate occurs via two 
(or more) mechanistically-distinct processes”.5
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Scheme 1. A generic two-stage domino catalytic process. FG = 
functional group, R = reagent.

As illustrated below, this specific requirement for the domino 
process can have profound kinetic implications. However, as far 
as we are aware, the kinetics of domino catalysis have not been 
explored in any detail.6k Herein, we report on an in situ 1H/19F 
NMR spectroscopic and kinetic study of a two-stage domino 
process, deconvolution of which provides general insight to the 
requirements for efficient catalysis.4,5

Discussion
A variety of C–H functionalizations have been developed 

into domino transformations,7-9 including direct-arylations,10,11 
and we selected a gold-catalyzed process12-18  (1 + 2; Scheme 2) 
for kinetic studies. Whilst conceptually simple, it requires a 
selective ‘intra-inter’19 sequence, within an array of C–H bonds.

Scheme 2. Domino C–H arylation of arylsilane 1 with 
arylsilane 2 to generate arylated-fluorene 4, via 3.

The mechanism for both stages in the 
domino-sequence involves C–Si auration of 
the silane,20 followed by C–H auration of 
the arene, via SEAr-type reactions of Ar-
[AuIII] intermediates,21 Scheme 3. The regio- 
and chemo-selectivities are consistent with 
previous observations, including the 
sterically-enhanced reactivity of ortho-
substituted aryl-silanes (1) towards 
auration,12c and the regioselective 
arylation of fluorenes (3).13
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Scheme 3. Domino-catalyzed arylation, highlighting that both 
cycles proceed via the same overarching mechanism.

1. Preliminary Kinetic Analysis and Impact of Sequence 
Selectivity (k1/k2). To gain an understanding of how the two 
separate, but linked, catalytic cycles (1 and 2, Scheme 3) dictate 
the kinetics of the overall domino process, we began by 
analysing the kinetics of domino cycle one, and domino cycle 
two in isolation.22 We then combined the two sets of data in 
kinetic simulations. Cyclisation of 1a gave chlorofluorene 
3a;15a this was then reacted with p-F-2, to give p-F-4a, Scheme 
4. Rate-coefficients for the turnover-rate limiting steps in the 
two processes, intramolecular reductive-elimination of 3a 
(kintra),15a and intermolecular reaction with fluorenes 3a and 4a 
(kinter, and kover),13 were then extracted by simulation (see SI).

Scheme 4. Independently determined rate coefficients for 
turnover-rate limiting processes13,15 in isolated domino-cycles. 
CSA = camphorsulfonic acid; tht = tetrahydrothiophene.

With kinetic data available for some of the individual steps, 
Scheme 4, the domino process in which 1a + p-F-2 react to 
generate 3a and then p-F-4a, Figure 1, was explored by 
simulation. Using the model, we extensively probed the effect 
of the partitioning23 of the catalyst across the two domino cycles 
(k1 and k2). This revealed two phenomenologically distinct 
zones, separated by a threshold value of k1/k2 = 1. When there 
is high selectivity for cycle 1 over cycle 2 (k1/k2 >>1), the 
domino intermediate (3a) accumulates substantially, and then 
decays as it undergoes consumption by cycle 2 (Scheme 3), 
Figure 1A. The rate of generation of the final domino product 
does not change significantly when k1/k2 ≥10 (see SI).

As the selectivity is reduced and k1/k2 approaches and reaches 
1:1 (i.e. no selectivity for cycle 1 over cycle 2), a low steady-
state concentration of the domino intermediate (3a) is 
generated, leading to a much slower evolution of the final 

domino product p-F-4a, Figure 1B. Under these conditions, the 
domino intermediate (3a) does not accumulate because it is 
generated in equimolar flux (k1/k2 = 1; [1a]0 = [2a]0) with the 
catalytic intermediate by which it is then captured (kinter).

As the ratio k1/k2 is reduced below unity, there is a profound 
change in the evolution of the model catalytic system. Each 
formal revolution of the cycle produces a deficiency of the 
domino intermediate with which the cycle 2 catalyst 
intermediate (Ar-Au) must react (kinter) to release catalyst 
required for cycle 1 (see 'start' in Scheme 3). As a consequence, 
with every turnover, the catalyst is further sequestered in an 
increasing reservoir on cycle 2, and, for a highly chemoselective 
process in which k1/k2 < 1, catalysis will stall, Figure 1C, at a 
point dictated by the initial catalyst loading.
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Figure 1. The impact of the C–Si partition (k1/k2) on the 
efficiency of an exclusively 'intra-inter'11 domino sequence 
where [1a]0 = [p-F-2]0 = 0.05M; 3 mol% Au(III); kact = 7  10-3 
s-1; kintra = 2.7  10-2 s-1; kinter = 3.6  10-2 M-1s-1; and there is no 
homocoupling12,13 or over-arylation (kover). See SI for a larger 
series of plots, where the k1/k2 partition ranges from 0.5 to 100.

2. Experimental Domino Catalysis data for 1a + p-F-2 and 
Kinetic Simulation. With insight into the impact of the cycle 
partitioning (k1/k2) Figure 1, the full experimental kinetic profile 
for the domino process was determined, Figure 2. Interleaved 
in situ 1H and 19F NMR spectroscopic analysis of the reaction 
of 1a with p-F-2 revealed a significant accumulation of fluorene 
3a in the early stages of reaction, followed by decay in 3a to 
give the domino arylation product p-F-4a, plus minor side-
products p-F-iso-4a and p-F-5a. The kinetic model constructed 
from the experimentally-estimated reference rate coefficients 
(Scheme 3) proved capable of simulating the temporal 
concentration data with reasonable accuracy when the C–Si 
auration partition was set to k1/k2 = 25:1, Figure 2. The high 
k1/k2 ratio (~25) is consistent with the general effect of ortho-
substituents accelerating C–Si auration by one to two orders of 
magnitude; a phenomenon attributed to alleviation of ground-
state steric strain on approach to a pseudo-tetrahedral transition-
state.12c,13
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Figure 2. Domino reaction of 1a with p-F-2, analysed by in situ 
1H and 19F NMR spectroscopy against an internal standard. 
Lower section, kinetic simulation (solid lines) using model 
shown with: kact = 7  10-3 s-1; kintra = 2.5  10-2 s-1; kinter = 3.9  
10-2 M-1s-1; kover =5.4  10-3 M-1s, and k1/k2 = 25/1. Products p-

F-4a and iso-p-F-4a, generated in 88:12 rr, are treated as a 
single component in the model. For details see SI.

3. Perturbation of the Domino Sequence-Selectivity 
(k1/k2). The effect of perturbation of the reactivity of both 
coupling partners in the domino sequence, by electron-
withdrawing groups (X, Z), was explored next. To simplify the 
analysis, 2,4-dimethylated arysilanes (1b-e, Table 1) were 
employed. The additional methyl groups on the ortho-benzyl 
group have the effect of limiting the C–H auration steps to the 
more electron-rich ring; the increased steric hindrance also 
suppresses over-arylation (5) of the primary products. 
Domino arylation proceeded with regioselectivity ranging from 
60/40 to >99/1, Table 1. Isolated fluorene intermediates 3 were 
found to undergo Au-catalyzed arylation by 2 with significantly 
higher regioselectivity than those obtained by the domino 
reactions,24 thus the 4/iso-4 ratios in Table 1 primarily reflect 
the change in k1/k2, see Figure 3.
Table 1. Effect of electron-withdrawing groups (X,Z) 
substituents para to the silane,25 on the partitioning (k1/k2) and 
selectivity (4/iso-4) in the domino reaction of 1 with 2; 
conditions as Figure 2.
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Figure 3. Graph A: selective accumulation of intermediate 3c, 
indicative of high 'intra-inter' selectivity. Graph B, low 'intra-
inter' selectivity, with accumulation of intermediates 3c and p-
F-6e. Reactions analysed in situ by 19F NMR spectroscopy.26

Comparison of the in situ 19F NMR spectroscopic analysis 
(Figure 3) of the domino reactions in Table 1 entries 4 and 7, 
illustrates the impact of modulation of k1/k2. Increased electron-
demand in the intermolecular arylating agent, 2 attenuates k2,25 
thus raising k1/k2 and affording high efficiency and selectivity, 
see Figure 3A. Conversely, increased electron-demand in the 
intramolecular arylation substrate, 1e, attenuates k1,25 thus 
reducing k1/k2 and leading to lower efficiency and selectivity; 
see Figure 3B. The selective accumulation of the domino 
intermediate (fluorene 3c; Figure 3A) is characteristic of a high 
k1/k2 ratio: neither of the isomeric products (6 or iso-p-F-4c) are 
detected. In contrast, for the reaction of the electron-deficient 
arylsilane 1e, Figure 3B, where the k1/k2 ratio is closer to unity, 
intermediates on both pathways (3e and p-F-6) are detected.26 
Whilst the impact of electron-donating groups, such as Me and 
MeO, on the silyl-bearing aryl rings in 1 and 2, was not explored 
in this kinetics-focussed study, it is anticipated that silane-
homocoupling will begin to dominate over cross-coupling for 
both the intermolecular12a,13 and intramolecular15 pathways. The 
use of analogous substrate pairs based on Schoenbeck's 
ArGeEt3 reagents16 may provide a solution to this issue.

4. General Kinetic Prerequisites for Domino Catalysis. 
From the studies described above, and applying the definition 
of Fogg and dos Santos,5 a number of general kinetic 
prerequisites can be identified for the successful concatenation 
of reactions via "a single catalytic mechanism”.4-6 As discussed 
below, whilst it is obvious that selectivity is required, there are 
subtleties to this selectivity that are not intuitive, and warrant 
careful consideration in new domino sequences.

Scheme 5. Generic two-cycle domino catalysis, and kinetic 
criteria for efficiency, together with temporal catalyst 
speciation and evolution of intermediates and products. (kS1 = 
100 kS2; kT1•FG1 = kT2•FG2; kT1•FG2 = kT2•FG1 = 0). See text for 
full discussion.

To simplify the discussion, we refer to four steps (kS1, kT1, kS2, 
kT2) in the generic domino sequence in Scheme 5. The process 
involves reaction of a substrate bearing two functional groups 
(FG1 and FG2) with two reagents (R1 and R2) via a domino-
intermediate. We use rate coefficients (k) as shorthand for rates, 
noting that for this and alternative domino processes, individual 
steps can be intra- or inter-molecular, and thus rate-ratios can 
vary as the reactions evolve and reactant concentrations change.

Avoiding cross-reactivity (R1 + FG2, and R2 + FG1) is 
essential to avoid side-products. However, the complementary 
pairs of the functional groups reacting in each of the two stages 
of the desired sequence (i.e. R1 + FG1, and then R2 + FG2) must, 
by definition,5 be similar and possibly even identical: they have 
to react via the same catalytic mechanism. Thus, compared to a 
normal (non-domino) process, there needs to be additional 
control-factor(s) that allow selective, chronologically-distinct, 
coupling of two (or more) pairs of functional groups by a single 
mechanism.

A primary component of such control, is that there is a 
succession in catalyst speciation between the two (or more) 
stages of the domino sequence, Scheme 5. The catalyst must 
enter cycle 1 (kS1) in preference to cycle 2 (kS2), until the 
reagents for the first stage of the domino reaction are consumed. 
The catalyst intermediate (R1-cat) on cycle 1, must also react 
selectively with FG1 over FG2, so that the domino intermediate 
is generated, rather than producing a side-product, or worse, 
generating an inhibited catalyst. (see Figure 1C). This 
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combination of two selectivity factors ensures maximum 
accumulation of the domino intermediate (see e.g. Figure 2) 
before significant engagement of the next stage in catalysis. 
However, if this selectivity is achieved by cycle 2 reactions (kS2, 
kT2) that are inherently slow, then the overall domino process 
will be inefficient, not due to undesired side-reactions, but due 
to slow turnover in the second stage: in essence one loses the 
advantages of conducting the process as a domino sequence.

Conclusions
We have reported the first kinetic studies on domino 

catalysis, employing a sequential coupling of two arylsilanes (1 
and 2), as a vehicle to explore the factors that control rate, 
selectivity, and ultimately the feasibility of the process. 
Beginning by analysis of the kinetics of isolated (non-domino) 
intermolecular12-14 and intramolecular15 arylations, we were 
able to develop a quantitative analysis of the kinetics of the 
corresponding domino process (Figures 1 and 2), and interpret 
the contrasting effects on the selectivity induced by substituents 
on the two aryl silanes (1, 2; Figure 3). Elucidation of the 
features that allow effective coupling of 1 and 2, albeit presently 
limited to the testing of substrates containing electron-donating 
groups on the silyl-bearing aryl rings, lead to a more-general 
consideration of selectivity in the context of domino catalysis: 
reactions proceeding via "a single catalytic mechanism”.4-6

Overall it can be concluded that efficient (selective and fast) 
domino catalyses must employ two different strategies to meet 
two kinetic prerequisites. Firstly, steps that partition reagents 
into the catalytic cycle, should ideally be fast relative to other 
steps: in such a way, the succession of catalyst speciation (i.e. 
into cycle 1, then cycle 2 and so on) can be attained by inherent 
rate differentials, e.g. kS1>>kS2, Scheme 5, without 
compromising the overall rate of the domino process. Secondly, 
the step that involves the reaction of the domino intermediate 
should be biased in some way, e.g. by molecularity, or by 
modulation of the inherent reactivity of the functional group 
(FG2 in Scheme 5). To illustrate the latter, consider the domino 
intermediate (fluorene 3) in Figure 3A. The conjugated rings in 
the domino intermediate make it considerably more reactive to 
arylation by Ar-Au than either of the two aromatic rings in 1. 
However, accumulation of this domino intermediate is assured 
by i) faster reaction of the ortho-substituted silane 1 (k1>>k2; 
due to steric effects) and ii) rapid intramolecular C–H 
functionalization. The combination of both features secures the 
requisite overall selectivity.

In general, the hallmark of efficient domino catalysis is the 
accumulation27 of the domino intermediate whilst turnover of 
cycle 1 dominates, followed by efficient consumption of the 
domino intermediate by cycle 2, see e.g. Figure 2 and Scheme 
5. Conditions under which either of the two selectivity criteria 
highlighted above are only marginally satisfied, will lead to 
competing processes, or to complete catalyst inhibition.28 The 
criteria elucidated impact on the rate, selectivity, and ultimately 
feasibility of the catalytic process, and can be used to augment 
general guiding principles in the design of substrates and 
conditions for 'domino',4 and ‘auto-tandem’ catalytic 
reactions.4-6
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De Nissi, Protti, S.; Fagnoni, M.; Bandini, M. Photocatalyst‐free, 
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(22) To emulate the conditions of the domino sequence, 3 mol% 
tht.AuBr3, in a solvent mixture of 100:1 CDCl3/CD3OD, was 
employed in the arylation of 1a, using double the quantity of 
oxidant [PhI(OAc)2] and acid (CSA) theoretically required.

(23) We use the term ‘partition’ to refer the ratio of two rate constants 
(i.e., k1/k2), rather than the ratio of absolute rates (k1[1]/k2[2]), 
noting that the latter quantity is subject to variation with 
conversion if k1 ≠ k2, and possibly also to disparity of the 
molecularity of the steps being compared.,

(24) For example, 3c gives p-F-4c in >99:1 rr, (compare, 95:5 entry 
2) and p-F-3e gives p-F-4e in 88:12 rr (compare 60:40, entry 4). 
To verify the >99:1 rr regioselectivity, an authentic sample of 
iso-p-F-4c was prepared via an independent synthetic route. See 
Supporting Information for details.

(25) Electron-withdrawing arylsilane substituents reduce C–Si 
auration rates ( = –1.6; see reference 13).

(26) Several unidentified side reactions precluded full analysis; 
authentic samples of intermediates were independently prepared 
to confirm assignments, see SI. Biphasic-kinetics are observed in 
the early phases of accumulation of 3c. This phenomenon is 
being investigated in detail and will be reported on in full in due 
course.

(27) Exceptions to this general principle of accumulation occur when 
two processes proceed partly or completely intramolecularly and 
intermediates are not released.5,6k In either case, the other steps 
involved in catalyst turnover (kT1, kT2, etc.) impact on the rate of 
the overall process, but not the kinetic hierarchy

(28) For example, some of the domino reactions studied herein 
proceed despite poor control of the succession in catalyst 
speciation between the two stages (k1/k2). This is accompanied 
by low selectivity in the arylation step, and this provides a bypass 
route for the catalyst to turnover, thereby avoiding stalling, see 
Figure 3B. However this bypass comes at the cost of isomeric 
product generation and thus reduced efficiency.
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