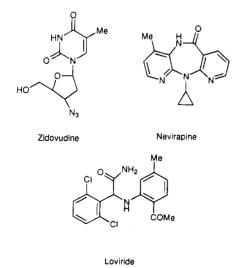
Communications to the Editor


Thiadiazole Derivatives: Highly Potent and Specific HIV-1 Reverse **Transcriptase Inhibitors**

Yasuaki Hanasaki,[†] Hiroyuki Watanabe,[†] Kimio Katsuura,*^{,†} Hiromitsu Takayama,*^{,‡} Seiichiro Shirakawa,[‡] Kentaro Yamaguchi,[‡] Shin-ichiro Sakai,[‡] Katsushi Ijichi,[§] Masatoshi Fujiwara,[§] Kenji Konno,[§] Tomoyuki Yokota,§ Shiro Shigeta," and Masanori Baba⊥

Tokyo Research Laboratory, Tosoh Company, Ltd., 2743-1, Hayakawa, Ayase-shi, Kanagawa-ken 252, Japan, Faculty of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263, Japan, Rational Drug Design Laboratories, Fukushima 960-12, Japan, Department of Microbiology, Fukushima Medical College, Fukushima 960-12, Japan, and Division of Human Retroviruses, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Kagoshima 890, Japan

Received March 2, 1995

Reverse transcriptase (RT) is an essential enzyme for the replication of HIV and thus is regarded as one of the most important targets for anti-HIV agents. So far, only the nucleoside RT inhibitors 3'-azido-3'-deoxythymidine (AZT, Zidovudine), 2',3'-dideoxyinosine (ddI, Didanosine), 2',3'-dideoxycytidine (ddC, Zalcitabine), and 2',3'-didehydro-3'-deoxythymidine (d4T, Stavudine) have been approved for the treatment of HIV-infected patients. However, their long-term use leads to toxic side effects such as bone marrow suppression.¹ In the meantime, non-nucleoside inhibitors, such as 1-[(2hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT),² dipyridodiazepinone (Nevirapine),³ and α -anilinophenylacetamide (R-89439, Loviride),⁴ have been found and developed as specific and potent inhibitors of HIV-1 RT. Several of them have proceeded to clinical evaluation.⁵

Tosoh Co., Ltd.

- [‡] Chiba University.
- [§] Rational Drug Design Laboratories.
- "Fukushima Medical College. ¹ Kagoshima University.

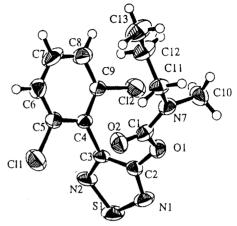
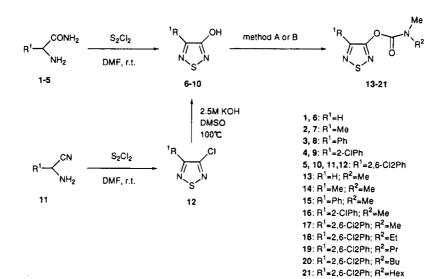


Figure 1. ORTEP drawing of compound 19.


From a random screening program of compounds having herbicidal activities,⁶ we identified a series of 1,2,5-thiadiazoles (TDA) as inhibitors of HIV-1. In this communication, we describe the efficient synthesis and the anti-HIV-1 activity as well as the structure-activity relationship of novel non-nucleoside inhibitors having the thiadiazole skeleton.

Chemistry. The compounds used in this investigation were synthesized as shown in Scheme 1. The 3-hydroxyl-4-substituted-1,2,5-thiadiazole nucleus was constructed in good yield by condensation of α -amino acid amides 1-5 with sulfur monochloride in dimethylformamide.⁷ Compound 10 could also be synthesized by the hydrolysis of 3-chloro-4-(2,6-dichlorophenyl)-1,2,5-thiadiazole (12) which was prepared from α -amino- α -(2,6-dichlorophenyl)acetonitrile (11) with sulfur monochloride. The introduction of a carbamoyl moiety at the 3-hydroxy position of the thiadiazole skeleton was achieved using the following two methods: method A. treatment of hydroxythiadiazoles 6-10 with carbamoyl chlorides, and method B, reaction of hydroxythiadiazole with triphosgene followed by treatment with secondary amines giving the carbamates 13-21. Under these reaction conditions, the carbamoyl groups were siteselectively introduced at the 3-hydroxy group (not at the N-2 position), which was confirmed by X-ray crystallography of 4-(2,6-dichlorophenyl)-1,2,5-thiadiazol-3yl N-methyl-N-propylcarbamate (19), as depicted in Figure 1.8

Antiviral Activity and Discussion. MT-4 cells and peripheral blood lymphocytes (PBLs) as cells, HTLV-III_B strain of HIV-1 and LAV-2_{EHO} strain of HIV-2 as viruses were used for the assay. Antiviral activity was based on the inhibition of virus-induced cytophathic effect (CPE) in MT-4 cells or the quantitative detection of HIV-1 p24 antigen in PBLs.^{9,10} The number of viable cells was determined by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) method.¹¹ Table 1 summarizes the anti-HIV-1 activity and cytotoxicity of the compounds synthesized in this study. 4-Phenyl-1,2,5-thiadiazol-3-yl N,N-dimethylcarbamate (15) exhibited antiviral activity (50% effective concentration (EC₅₀) = 23 μ M). Cytotoxicity was observed at the concentration that was 8-fold higher than the EC_{50} .

0022-2623/95/1838-2038\$09.00/0 © 1995 American Chemical Society

Scheme 1^a

^a Method A: ClC(=O)N(Me)R², K₂CO₃, CH₃CN, reflux. Method B: (1) triphosgene, pyridine, CH₂Cl₂, rt, (2) HN(Me)R², CH₂Cl₂, rt.

Table 1. Inhibition of HIV-1 and HIV-2 Replication in MT-4Cells and Peripheral Blood Lymphocytes (PBLs) by TDADerivatives

Table 2.	Inhibitory	Effect	of (Compound	19	on	HIV-1	\mathbf{RT}
Activity ^a				-				

,			EC_{50}^{a} ,	$\mathrm{CC}_{50}{}^{b}$,	
compd	virus	cells	μM	$\mu \mathbf{M}$	SI^c
10	HIV-1 (HTLV-III _B)	MT-4	>212	221	<1
13	HIV-1 (HTLV-III _B)	MT-4	>560	560	<1
14	$HIV-1$ ($HTLV-III_B$)	MT-4	> 535	535	<1
15	HIV-1 (HTLV-III _B)	MT-4	23	183	8
16	HIV-1 (HTLV-III _B)	MT-4	0.32	161	503
17	HIV-1 (HTLV-III _B)	MT-4	0.24	145	604
18	HIV-1 (HTLV-III _B)	MT-4	0.039	136	3487
19	HIV-1 (HTLV-III _B)	MT-4	0.013	131	10 077
		\mathbf{PBL}	0.004	150	$37\ 500$
	$HIV-2 (LAV-2_{EHO})$	MT-4	>131	131	<1
20	HIV-1 (HTLV-III _B)	MT-4	0.039	29	744
21	$HIV-1$ ($HTLV-III_B$)	MT-4	0.10	16	160
AZT	HIV-1 (HTLV-III _B)	MT-4	0.004	3.2	800
		PBL	0.003	83	$27\ 667$
Nevirapine	HIV-1 (HTLV-III _B)	MT-4	0.073	290	3973
Loviride	$HIV-1$ ($HTLV-III_B$)	MT-4	0.006	137	22 833
		PBL	0.11	48	436

^a 50% effective concentration based on the inhibition of HIV-1-induced CPE in MT-4 cells or the reduction of p24 antigen in culture supernant of PBLs. ^b 50% cytotoxic concentration based on the reduction of viability of mock-infected cells. ^c Selectivity index: ratio of CC_{50} to EC_{50} . All data represent mean values of at least two separate experiments.

The introduction of the chlorine atoms at the 2- or 2,6positions of the phenyl group led to an increase in activity (2-ClPh (16), $EC_{50} = 0.32 \,\mu M$; 2,6-diClPh (17), $EC_{50} = 0.24 \ \mu M$). However, the replacement of the 4-phenyl group in the TDA skeleton by hydrogen (13) or a methyl group (14) resulted in complete loss of activity. 3-Hydroxy-4-(2,6-dichlorophenyl)-1,2,5-thiadiazole (10) was also inactive. These results indicated that the presence of both the aromatic ring at the C-4 position and the carbamate moiety at the C-3 position of the thiadiazole ring was essential. Furthermore, the effect of the alkyl group (\mathbf{R}^2) in the carbamate moiety was also examined. 4-(2,6-Dichlorophenyl)-1,2,5-thiadiazol-3-yl N-methyl-N-propylcarbamate (19) exhibited the most potent activity; in the MT-4 cells, its EC_{50} and CC_{50} values were 0.013 and 131 μ M, respectively (SI = 10 077). Under the same assay conditions, Nevirapine, Loviride, and AZT displayed EC₅₀s of 0.073, 0.006, and $0.004 \ \mu M$, respectively.

When 19 was evaluated for its inhibition of HIV-1 $(HTLV-III_B)$ in PBLs, it proved to be extremely potent

	$\mathrm{IC}_{50}{}^b, \mu\mathbf{M}$			
compd	poly(rA)-oligo(dT) ^c	poly(rC)-oligo(dG)		
18	3.4	0.30		
19	5.8	0.80		
20	12	1.7		
AZT-TP	0.006	>50		
Loviride	16	0.50		

^a The assay procedure has been described previously.^{12 b} 50% inhibition concentration. ^c Template-primer used for assay. All data represent mean values of at least two separate experiments. inhibitor (EC₅₀ = 0.004 μ M). However, it had no effect on the replication of HIV-2 (LAV-2_{EHO}) at concentrations up to 131 μ M. The effect of compounds 18–20 on recombinant HIV-1 RT (HIV-1 rRT) was examined with poly(rC)-oligo(dG) and poly(rA)-oligo(dT) as the template-primers (Table 2). We found that these compounds inhibited HIV-1 rRT and that the inhibition was dependent on the template-primer used.

In conclusion, we have shown that the TDA derivatives were highly potent and specific inhibitors of HIV-1. Considering that the TDA derivatives are easy to synthesize, they have potential as candidate drugs for the chemotherapy of HIV-1 infections. Our recent studies on their mechanism of action have revealed that the TDA derivatives belong to the family of nonnucleoside HIV-1 RT inhibitors. The investigations on further structure—activity relationships and emergence of drug resistance are now in progress.

Acknowledgment. The strain of HIV-2 (LAV- 2_{EHO}) was provided by L. Montanier (Pasteur Institute, Paris, France), while the HIV-1 (HTLV-III_B) strain was originally obtained from R. C. Gallo (National Cancer Institute, Bethesda, MD).

Supplementary Material Available: Experimental Procedures, physical and spectral data for compounds 10 and 12– 21, and X-ray crystallographic data for compound 19 (26 pages). Ordering information is given on any current masthead page.

References

 Richman, D. D.; Fischl, M. A.; Grieco, M. H.; Gottlieb, M. S.; Volberding, P. A.; Laskin, O. L.; Leedom, J. M.; Groopman, J. E.; Mildvan, D.; Hirsch, M. S.; Jackson, G. G.; Durack, D. T.; Nusinoff-Lehrman, S. (The AZT Collaborative Working Group). The toxicity of azidothymidine (AZT) in the treatment of pacients with AIDS and AIDS-related complex: A double-blind, placebocontrolled trial. N. Engl. J. Med. **1987**, 317, 192–197.

- controlled trial. N. Engl. J. Med. 1987, 317, 192-197.
 (2) (a) Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R. T.; Balzarini, J.; De Clercq, E. A novel lead for specific anti-HIV-1 agents: 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine. J. Med. Chem. 1989, 32, 2507-2509. (b) Baba, M.; Tanaka, H.; De Clercq, E.; Pauwels, R.; Balzarini, J.; Schols, D.; Nakashima, H.; Perno, C.-F.; Walker, R. T.; Miyasaka, T. Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem. Biophys. Res. Commun. 1989, 165, 1375-1381.
- (3) Merluzzi, V. J.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C.-K.; Eckner, K.; Hattox, S.; Adams, J.; Rosehthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. *Science* **1990**, *250*, 1411-1413.
- reverse transcriptase inhibitor. Science 1990, 250, 1411-1413.
 (4) Pauwels, R.; Andries, K.; Debyser, Z.; Van Daele, P.; Schols, D.; Vandamme, A.-M.; Stoffels, P.; De Vreese, K.; Woestenborghs, R.; Janssen, C. G. M.; Anne, J.; Cauwenbergh, G.; Desmyter, J.; Heykants, J.; Janssen, M. A. C.; De Clercq, E.; Janssen, P. A. J. Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of α-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1839-1842.
- (5) (a) Carr, A. Efficacy of Nevirapine added to Zidovudine in P24+ HIV-1-infected pacients with CD4+ counts <500/mm³. Tenth International Conference on AIDS, Yokohama, Japan, 1994; Abstract 511B. (b) Staszewski, S.; Vandercam, B.; De Vuyst, H.; Colebunders, B.; Clumeck, N.; Still, W.; Peeters, M.; Andries, K.; Stoffels, P.; Van Den Broeck, R.; Janssen, P. A. J. Evaluation of the efficacy and tolerance of R18893, R89439 (loviride) and placebo in asymptomatic HIV-1 patients. Tenth International Conference on AIDS, Yokohama, Japan, 1994; Abstract 513B.
- (6) Hanasaki, Y.; Tsuda, K.; Watanabe, H.; Tsuzuki, K.; Murakami, M.; Niimi, N. Thiadiazole derivatives and herbicide compositions containing the same. Eur. Patent Appl. E. P. 0414511, 1991.

- (7) Weinstock, L. M.; Davis, P.; Handelsman, B.; Tull, R. A General Synthetic System for 1,2,5-thiadiazoles. J. Org. Chem. 1967, 32, 2823-2829.
- (8) Physical data for compound **19** is as follows: mp 55–58 °C (cyclohexane); ¹H NMR (200 MHz, CDCl₃) δ 0.73 (t, J = 7.4 Hz, 3H), 1.42 (sextet, J = 7.4 Hz, 2H), [2.87 (s), 2.91 (s), 3H], [3.15 (t, J = 7.4 Hz), 3.20 (t, J = 7.4 Hz), 2H], 7.22–7.43 (m, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 11.2, 20.7, 21.5, 35.1, 35.5, 51.6, 51.7, 128.6, 130.2, 131.6, 131.7, 136.2, 148.9, 149.0, 151.8, 156.6, 156.8; IR (KBr, cm⁻¹) v_{max} 1740, 1430, 1380, 1300, 1235, 1150, 785; MS (EI) m/z 349 (0.3), 347 (0.6), 345 (M⁺, 0.9), 171 (4.3), 100 (100); MS (C1) m/z 350 (2.7), 348 (9.7), 346 (MH⁺, 15), 100 (100). Anal. (C₁₃H₁₃N₃O₂SCl₂) C, H, N.
- (9) Baba, M.; De Clercq, E.; Tanaka, H.; Ubasawa, M.; Takashima, H.; Sekiya, K.; Nitta, I.; Umezu, K.; Nakashima, H.; Mori, Shigeta, S.; Walker, R. T.; Miyasaka, T. Potent and selective inhibition of human immunodeficiency virus type 1 (HIV-1) by 5-ethyl-6-phenylthiouracil derivatives through their interaction with the HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2356-2360.
- (10) Baba, M.; Shigeta, S.; Yuasa, H.; Takashima, H.; Sekiya, K.; Ubasawa, M.; Tanaka, H.; Miyasaka, T.; Walker, R. T.; De Clercq, E. Preclinical evaluation of MKC-442, a highly potent and specific inhibitor of human immunodeficiency virus type 1 in vitro. Antimicrob. Agents Chemother. **1994**, 38, 688-692.
- (11) Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and Automated Tetrazolium-Based Colorimetric Assay for the Detection of Anti-HIV Compounds. J. Virol. Methods 1988, 20, 309-322.
- (12) Baba, M.; Pauwels, R.; Balzarini, J.; Arnout, J.; Desmyter, J.; De Clercq, E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. *Proc. Natl. Acad. Sci. U.S.A.* **1988**, *85*, 6132-6136.

JM950157F