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Electrophilic a-thiocyanation of chiral and achiral N-acyl imides.
A convenient route to 5-substituted and 5,5-disubstituted

2,4-thiazolidinediones
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Abstract—Electrophilic a-thiocyanation of N-acyl carboximides using N-thiocyanatosuccinimide and hydrolytic cyclization of the
adducts affords 5-substituted and 5,5-disubstituted 2,4-thiazolidinediones in good overall yields. a-Thiocyanation of chiral N-acyl
carboximides proceeds with excellent diastereoselectivity, although partial racemization occurs during subsequent cyclization.
� 2008 Elsevier Ltd. All rights reserved.
The 2,4-thiazolidinedione (TZD) moiety is extensively
utilized as a carboxylic acid mimetic to improve the met-
abolic stability and therapeutic profile of bioactive
agents.1 TZDs are often prepared from the parent car-
boxylates via a three-step sequence of a-halogenation,
nucleophilic displacement with thiourea2 or KSCN,3

and hydrolytic ring closure, although this route can be
problematic for 5,5-disubstituted thiazolidinediones4

and/or if sensitive functionality is present.5 Conse-
quently, we sought an alternative procedure and report
herein the direct a-thiocyanation of N-acyl carboximides
1 (R@H) using N-thiocyanatosuccinimide6 (2) and
hydrolytic cyclization of adduct 3 to TZDs 4 in good
overall yields (Eq. 1). Notably, a-thiocyanation of chiral
1 (R@PhCH2A) proceeded with excellent diastereoselec-
tivity, although partial racemization occurred during
cyclization to 4.

ð1Þ
Based upon earlier studies by Toste et al.,6 we selected
N-thiocyanatosuccinimide (2) as a convenient source
of S-electrophilic thiocyanate. However, extensive ef-
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forts to add 2 to enolic intermediates generated from
carboxylic acids and esters routinely afforded little if
any of the desired a-thiocyanate adduct. N-Acyl carbox-
imides7 1 (R@H), in sharp contrast, reacted smoothly
with 2 following the Evans’ protocol7 (Method A8) to
give 3 in good yields (Table 1).9 The reaction was com-
patible with an electron rich aryl (Entry 1), sulfur het-
erocycle (Entry 2), terminal and disubstituted
acetylenes (Entries 3 and 4), terminal olefin (Entry 5),
and vinyl dibromide (Entry 6). a-Phenoxy carboximide
23 (Entry 7), on the other hand, proved recalcitrant as
the boron enolate, but could be coaxed to react with 2
by way of its lithium salt (Method B8).

Cyclization to the corresponding TZDs 4 (Table 1) was
best done with a two-step, one-pot process via initial
methoxide addition to the thiocyanate with concomitant
annulation and then acidic hydrolysis of the resultant 2-
methoxythiazol-4(5H)-ones.10 Not surprisingly, 25 was
hydrolytically labile and could not be isolated in any sig-
nificant amount. Analogous a-thiocyanations of 4(R)-
phenylmethyl-2-oxazolidinones7 26 (Entry 1) and 28
(Entry 2) via Method A proceeded in good yields and
with virtually complete diastereoselectivities (Table 2).
By analogy with comparable boron enolate azidations
and brominations, adducts 27 and 29 were assigned
the 2R-stereochemistry. a,a-Disubstituted carboxamides
30a11 and b (Entry 3) reacted sluggishly under the same
conditions, so we adapted Kobayashi’s protocol12

[LDA, Ti(O-i-Pr)3Cl] for the a-thiocyanation (Method
C8). The same chromatographically separable 1:1 mix-
ture of diastereomers 31a and b was obtained starting
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Table 1. a-Thiocyanation of N-acyl imides and hydrolytic cyclization

Entry Carboximide a-Thiocyanate Yield (%) TZD Yielda (%)

1 78b 78

2 74b 66

3 69b 62

4 71b 68

5 72b 71

6 71b 68

7 54c 0

a (i) NaOMe, MeOH, 0 �C; (ii) 2 N HCl, rt.
b Prepared via Method A.
c Prepared via Method B.

Table 2. Asymmetric a-thiocyanation of N-acyl imides

Entry Carboximide a-Thiocyanate Yield (%) d.r.a

1 83b 99:1

2 74b 99:1

3 66c 1:1

Stereochemical assignments are tentative.
a Determined by 1H/13C NMR.
b Prepared via Method A.
c Prepared via Method C.

J. R. Falck et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1768–1771 1769



Scheme 1. Reagents and conditions: (a) Pt(Me2POH)3 (25 mol%), THF/H2O (2:1), 40 �C, 2 h; (b) LDA (1.2 equiv), THF/Et2O (2:1), �78 �C, 2 h.
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from either 30a or b. All efforts to convert thiocyanates
27 and 29 to TZDs using the above and related hydro-
lytic conditions induced complete racemization at the
C(2)-stereogenic centers. Reasoning that the a-hydrogen
would be less prone to epimerization if the thiocyanate
was transformed into a thiocarbamate, we developed
an exceptionally mild procedure utilizing the Ghaffar–
Parkins’ catalyst in THF/water.13 In practice, 32 was ob-
tained from 27 in excellent yield and with no indication
of epimerization by 1H/13C NMR analysis (Scheme 1).
Unfortunately, cyclization to 33, even at low tempera-
ture, resulted in some loss of C(2)-stereochemical integ-
rity as determined by chiral HPLC.14,15

As anticipated, cyclizations of thiocyanates 31a and b,
which lack epimerizable a-hydrogens, using either of
the above annulation procedures were uneventful and
the derived 5,5-disubstituted TZDs 34a and b were se-
cured as single enantiomers14 in ca. 70% yield.
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column chromatography to give a-thiocyanate 3 in the
indicated yield (Table 1). Method C: A precooled (�78 �C)
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J = 8.1 Hz), 3.78 (s, 3H), 2.94 (t, 2H, J = 7.8 Hz), 2.63 (t,
2H, J = 7.8 Hz), 1.96 (apparent p, 2H, J = 7.5 Hz); 13C
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NMR (CDCl3, 100 MHz) d 173.5, 158.0, 153.7, 133.8,
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6.91 (dd, 1H, J = 5.1, 3.3 Hz), 6.82 (d, 1H, J = 3.3 Hz),
4.84 (t, 1H, J = 8 Hz), 4.49–4.40 (m, 2H), 4.11–3.96 (m,
2H), 3.06–3.02 (m, 2H), 2.57–2.35 (m,2H); 13C NMR
(CDCl3, 100 MHz) d 167.9, 153.4, 141.9, 127.3, 125.6,
124.3, 109.3, 62.8, 45.1, 42.8, 32.7, 26.7.
Compound 10: mp 67.7–70.2 �C; TLC: EtOAc/hexane
(3:7, 3 elutions), Rf � 0.38; 1H NMR (CDCl3, 400 MHz) d
8.95 (s, 1H, NH), 7.17 (d, 1H, J = 4.8 Hz), 6.93 (dd, 1H,
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2.30–2.17 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 175.3,
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(2:3), Rf � 0.44; 1H NMR (CDCl3, 300 MHz) d 7.35–7.19
(m, 5H), 7.13 (d, 2H, J = 9 Hz), 6.83 (d, 2H, J = 9 Hz),
4.69–4.59 (m, 1H), 4.12–4.21 (m, 2H), 3.78 (s, 3H), 3.28
(dd, 1H, J = 13.2, 3.3 Hz), 3.08–2.88 (m, 2H), 2.74 (dd,
1H, J =13.2, 3.3 Hz), 2.68–2.63 (m, 2H), 2.04–1.93 (m,
2H); 13C NMR (CDCl3, 100 MHz) d 172.9, 157.7, 153.3,
135.2, 133.4, 129.3, 128.8, 127.2, 113.6, 66.0, 55.1, 54.9,
37.7, 34.8, 34.1, 25.9; ½a�D23 �43.7 (c 1.34, CHCl3).
Compound 27: mp 108.3–109.9 �C; TLC: EtOAc/hexane
(3:7), Rf � 0.30; 1H NMR (CDCl3, 300 MHz) d 7.35–7.20
(m, 5H), 7.10 (d, 2H, J = 8.8 Hz), 6.82 (d, 2H, J = 8.8 Hz),
4.76 (t, 1H, J = 7.2 Hz), 4.63–4.56 (m, 1H), 4.24–4.16 (m,
2H), 3.76 (s, 3H), 3.29 (dd, 1H, J = 13.6, 3.2 Hz), 2.86–
2.79 (m, 2H), 2.75–2.67 (m, 2H), 2.55–2.45 (m, 1H), 2.39–
2.28 (m, 1H); 13C NMR (CDCl3, 100 MHz) d 168.0, 158.6,
153.3, 134.7, 131.7, 129.8, 129.7, 129.3, 127.8, 114.3, 109.4,
69.9, 55.5, 55.4, 45.4, 37.6, 32.6, 31.9; ½a�D25 �110.1 (c 1.05,
CHCl3).
Compound 28: mp 46.8–48.2 �C; TLC: EtOAc/hexane
(2:3), Rf � 0.40; 1H NMR (CDCl3, 400 MHz) d 7.34–7.12
(m, 6H), 6.92 (dd, 1H, J = 3.5, 5.2 Hz), 6.83 (d, 1H,
J = 3.5 Hz), 4.68–4.63 (m, 1H), 4.19–4.14 (m, 2H), 3.27
(dd, 1H, J = 13.6, 3.2 Hz), 3.04–2.92 (m, 4H), 2.75 (dd,
1H, J = 13.2, 9.6 Hz), 2.12–2.02 (m, 2H); 13C NMR
(CDCl3, 75 MHz) d 172.8, 153.5, 144.3, 135.4, 129.5,
129.1, 127.5, 126.9, 124.7, 123.4, 66.3, 55.2, 38.0, 34.8,
29.2, 26.2; ½a�D25 �48.1. (c 1.01, CHCl3).
Compound 29: Pale yellow solid, mp 62.8–64.2 �C; TLC:
EtOAc/hexane (1:4, 2 elutions), Rf � 0.30; 1H NMR
(CDCl3, 300 MHz) d 7.14–7.38 (m, 6H), 6.92 (dd, 1H,
J = 3.6, 5.1 Hz), 6.84 (d, 1H, J = 3.6 Hz), 4.79 (t, 1H,
J = 9 Hz), 4.71–4.61 (m, 1H), 4.23 (d, 2H, J = 4.8 Hz),
3.32 (dd, 1H, J = 13.5, 2.7 Hz), 3.10–3.05 (m, 2H), 2.90
(dd, 1H, J = 13.5, 9.3 Hz), 2.70–2.38 (m, 2H); 13C NMR
(CDCl3, 75 MHz) d 167.7, 153.3, 141.9, 134.7, 129.7,
129.3, 127.8, 127.3, 125.6, 124.3, 109.2, 66.9, 55.5, 45.2,
37.6, 32.5, 26.7; ½a�D25 �79.25 (c 0.81, CHCl3).

10. TZD cyclization procedure: NaOMe (2.5 mmol) added
with stirring to a 0 �C solution of a-thiocyanate 3
(1 mmol) in dry MeOH/THF (4:1, 50 mL). After 1 h, the
reaction mixture was acidified with 2 N HCl to pH 2. After
stirring at rt for 3 h, the organic solvent was removed in
vacuo and the aqueous residue was extracted with EtOAc
(3· 10 mL). The combined organic extracts were washed
with water, dried, concentrated in vacuo and the residue
purified by SiO2 chromatography to give 2,4-thiazolidin-
edione 4 in the indicated yields (Table 1).

11. Imide 30 was prepared from racemic 2-methyl-3-phenyl-
propanoic acid and diastereomers 30a and b were
separated chromatographically [TLC: EtOAc/hexane
(3:7), 30a and b Rf � 0.40 and 0.38, respectively]. The
absolute configuration of 30a was established by sapon-
ification [LiOH/H2O2, THF/H2O (2:1), 0 �C] and com-
parison of the free acid optical rotation with the
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14. Chiral HPLC of 33: Chiralpak� AD (250 · 4.6 mm),
hexane/i-PrOH/AcOH (5:1:0.01), flow rate 1 mL/min,
230 nm, Rt � 9.86 and 14.61 min. For 34a and b:
Rt � 6.4 and 13.7 min, respectively.

15. The interconversion of 5-substituted TZD enantiomers
under various conditions has been noted before: Welch, C.
J.; Kress, M. H.; Beconi, M.; Mathre, D. J. Chirality 2003,
15, 143; Shen, Z.; Bakhtiar, R.; Komuro, M.; Awano, K.;
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