

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 1768-1771

Electrophilic α-thiocyanation of chiral and achiral N-acyl imides. A convenient route to 5-substituted and 5,5-disubstituted 2,4-thiazolidinediones

J. R. Falck,* Shuanhu Gao, Ravi Naga Prasad and Sreenivasulu Reddy Koduru

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Received 14 January 2008; revised 8 February 2008; accepted 13 February 2008 Available online 16 February 2008

Abstract—Electrophilic α -thiocyanation of *N*-acyl carboximides using *N*-thiocyanatosuccinimide and hydrolytic cyclization of the adducts affords 5-substituted and 5,5-disubstituted 2,4-thiazolidinediones in good overall yields. α -Thiocyanation of chiral *N*-acyl carboximides proceeds with excellent diastereoselectivity, although partial racemization occurs during subsequent cyclization. © 2008 Elsevier Ltd. All rights reserved.

The 2,4-thiazolidinedione (TZD) moiety is extensively utilized as a carboxylic acid mimetic to improve the metabolic stability and therapeutic profile of bioactive agents.¹ TZDs are often prepared from the parent carboxylates via a three-step sequence of α-halogenation, nucleophilic displacement with thiourea² or KSCN,³ and hydrolytic ring closure, although this route can be problematic for 5,5-disubstituted thiazolidinediones⁴ and/or if sensitive functionality is present.⁵ Consequently, we sought an alternative procedure and report herein the direct α -thiocyanation of N-acyl carboximides 1 (R=H) using N-thiocyanatosuccinimide⁶ (2) and hydrolytic cyclization of adduct 3 to TZDs 4 in good overall yields (Eq. 1). Notably, α-thiocyanation of chiral 1 (R=PhCH₂-) proceeded with excellent diastereoselectivity, although partial racemization occurred during cyclization to 4.

$$\begin{array}{c} \begin{array}{c} 0 \\ R^{1} \\ R^{2} \\ R^{2} \end{array} \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{2} \\ SCN \\ R \end{array} \begin{array}{c} 0 \\ R^{1} \\ R^{2} \\ SCN \\ R \end{array} \begin{array}{c} 0 \\ R^{1} \\ R^{2} \\ SCN \\ R \end{array} \begin{array}{c} 0 \\ R^{1} \\ Cyclization \\ 4 \\ O \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ S \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{2} \\ R \end{array} \begin{array}{c} 0 \\ R^{2} \\ R^{$$

Based upon earlier studies by Toste et al.,⁶ we selected N-thiocyanatosuccinimide (2) as a convenient source of S-electrophilic thiocyanate. However, extensive ef-

0960-894X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.02.034

forts to add **2** to enolic intermediates generated from carboxylic acids and esters routinely afforded little if any of the desired α -thiocyanate adduct. *N*-Acyl carboximides⁷ **1** (R=H), in sharp contrast, reacted smoothly with **2** following the Evans' protocol⁷ (Method A⁸) to give **3** in good yields (Table 1).⁹ The reaction was compatible with an electron rich aryl (Entry 1), sulfur heterocycle (Entry 2), terminal and disubstituted acetylenes (Entries 3 and 4), terminal olefin (Entry 5), and vinyl dibromide (Entry 6). α -Phenoxy carboximide **23** (Entry 7), on the other hand, proved recalcitrant as the boron enolate, but could be coaxed to react with **2** by way of its lithium salt (Method B⁸).

Cyclization to the corresponding TZDs 4 (Table 1) was best done with a two-step, one-pot process via initial methoxide addition to the thiocyanate with concomitant annulation and then acidic hydrolysis of the resultant 2methoxythiazol-4(5H)-ones.¹⁰ Not surprisingly, 25 was hydrolytically labile and could not be isolated in any significant amount. Analogous α -thiocyanations of 4(R)phenylmethyl-2-oxazolidinones⁷ 26 (Entry 1) and 28 (Entry 2) via Method A proceeded in good yields and with virtually complete diastereoselectivities (Table 2). By analogy with comparable boron enolate azidations and brominations, adducts 27 and 29 were assigned the 2*R*-stereochemistry. α, α -Disubstituted carboxamides **30a**¹¹ and **b** (Entry 3) reacted sluggishly under the same conditions, so we adapted Kobayashi's protocol¹² [LDA, Ti(O-*i*-Pr)₃Cl] for the α -thiocyanation (Method C8). The same chromatographically separable 1:1 mixture of diastereomers 31a and b was obtained starting

Keywords: Thiozyanate; Thiazolidinedione; Enolate; Asymmetric; Heterocycle.

^{*} Corresponding author. Tel.: +1 214 648 2406; fax: +1 214 648 6455; e-mail: j.falck@UTSouthwestern.edu

Table 1. α-Thiocyanation of N-acyl imides and hydrolytic cyclization

Entry	Carboximide	α-Thiocyanate	Yield (%)	TZD	Yield ^a (%)		
1			78 ^b	MeO O NH	78		
2	S 8 8		74 ^b		66		
3	$= \underbrace{\overset{0}{\underset{N}{\overset{0}{}}}_{11} \overset{0}{\underset{M}{\overset{0}{}}}_{11}$	$= \underbrace{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{0$	69 ^b		62		
4	$BnO_{\mathcal{H}_{4}} = \underbrace{\begin{array}{c} 0 & 0 \\ N & N \\ 14 & V \end{array}}_{N & V}$	$BnO_{\text{W}_4} = \underbrace{\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 15 & \text{NCS} \end{array}}_{N \leftarrow 0}$	71 ^b		68		
5		0 0 18 NCS 0 18 NCS	72 ^b	0 ↓ 19 S√ 0	71		
6	$ \begin{array}{c} $		71 ^b	Br 45 NH Br 22 S 0	68		
7			54°	0 NH 25 0	0		
^a (i) NaOMe, MeOH, 0 °C; (ii) 2 N HCl, rt. ^b Prepared via Method A. ^c Prepared via Method B.							

.

Table 2. Asymmetric α -thiocyanation of *N*-acyl imides

Entry	Carboximide	α-Thiocyanate	Yield (%)	d.r. ^a
1		MeO 27 NCS Ph	83 ^b	99:1
2	28 Ph	29 NCS Ph	74 ^b	99:1
3	$ \begin{array}{c} $	$31a: R^{1} = Me, R^{2} = -SCN$ 31b: R ¹ = -SCN, R ² = Me	66°	1:1

Stereochemical assignments are tentative. ^a Determined by ¹H/¹³C NMR. ^b Prepared via Method A.

^c Prepared via Method C.

Scheme 1. Reagents and conditions: (a) Pt(Me₂POH)₃ (25 mol%), THF/H₂O (2:1), 40 °C, 2 h; (b) LDA (1.2 equiv), THF/Et₂O (2:1), -78 °C, 2 h.

from either **30a** or **b**. All efforts to convert thiocyanates **27** and **29** to TZDs using the above and related hydrolytic conditions induced complete racemization at the C(2)-stereogenic centers. Reasoning that the α -hydrogen would be less prone to epimerization if the thiocyanate was transformed into a thiocarbamate, we developed an exceptionally mild procedure utilizing the Ghaffar–Parkins' catalyst in THF/water.¹³ In practice, **32** was obtained from **27** in excellent yield and with no indication of epimerization by ¹H/¹³C NMR analysis (Scheme 1). Unfortunately, cyclization to **33**, even at low temperature, resulted in some loss of C(2)-stereochemical integrity as determined by chiral HPLC.^{14,15}

As anticipated, cyclizations of thiocyanates **31a** and **b**, which lack epimerizable α -hydrogens, using either of the above annulation procedures were uneventful and the derived 5,5-disubstituted TZDs **34a** and **b** were secured as single enantiomers¹⁴ in ca. 70% yield.

Acknowledgments

Financial support provided by the Robert A. Welch Foundation and NIH (GM31278, DK38226).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008. 02.034.

References and notes

- (a) Boyd, A. S. *Int. J. Derm.* 2007, 46, 557; (b) McIntyre, R. S.; Soczynska, J. K.; Woldeyohannes, H. O.; Lewis, G. F.; Leiter, L. A.; MacQueen, G. M.; Miranda, A.; Fulgosi, D.; Konarski, J. Z.; Kennedy, S. H. *Expert Opin. Pharmacother.* 2007, 8, 1615; (c) Elte, J. W. F.; Blickle, J. F. *Eur. J. Inter. Med.* 2007, 18, 18.
- Momose, Y.; Maekawa, T.; Yamano, T.; Kawada, M.; Odaka, H.; Ikeda, H.; Sohda, T. J. Med. Chem. 2002, 45, 1518.
- 3. Sohda, T.; Mizuno, K.; Kawamatsu, Y. Chem. Pharm. Bull. 1984, 32, 4460.
- 4. Doran, W. J.; Shonle, H. A. J. Org. Chem. 1938, 3, 193.
- 5. Alternative syntheses: (a) Metwally, M.; Etman, H.; Keshk, E.; Fekry, A. Phosphorus, Sulfur Silicon Relat.

Elem. **2006**, *181*, 1039; (b) Hu, B.; Malamas, M.; Ellingboe, J.; Largis, E.; Han, S.; Mulvey, R.; Tillett, J. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 981; (c) Singh, S. P.; Parmar, S. S.; Raman, K.; Stenberg, V. I. *Chem. Rev.* **1981**, *81*, 175; (d) Gaupp, S.; Effenberger, F. *Tetrahedron: Asymmetry* **1999**, *10*, 1777.

- 6. Toste, F. D.; De Stefano, V.; Still, I. W. J. Synth. Commun. 1995, 25, 1277.
- Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011.
- Method A: n-Bu₂BOTf (1 M solution in CH₂Cl₂, 1.1 mmol) was added with stirring to a 0 °C solution of N-acyl imide 1 (1 mmol) in CH₂Cl₂ (10 mL) under an argon atmosphere followed by neat (*i*-Pr)₂NEt (1.2 mmol). After 1 h, the resultant slurry was cooled to -78 °C and a solution of 2 (2 mmol) in CH₂Cl₂ (12 mL) was slowly added via syringe. After 1.5 h, the reaction was quenched using pH 7 phosphate buffer (3.5 mL) and 30% H₂O₂ (22 mmol). Hydrogen peroxide was omitted during the quenching of adducts 9, 21, and 29. Extractive isolation and purification by SiO₂ chromatography gave α-thiocyanate 3 in the indicated yields (Table 1).

Method B: A precooled (-78 °C) solution of N-acyl imide 1 (1 mmol) in dry THF (10 mL) was added via cannula to a stirring, -78 °C solution of LDA (1.2 mmol) in dry THF (6 mL) under an argon atmosphere. After stirring for 30 min, a freshly prepared solution of 2 (2 mmol) in dry THF (3 mL) was added dropwise and the reaction mixture was allowed to stir for 2 h at -78 °C. The reaction mixture was quenched with saturated aq NH₄Cl (10 mL) and extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), concentrated in vacuo, and the residue was purified by SiO₂ column chromatography to give α -thiocyanate 3 in the indicated yield (Table 1). Method C: A precooled (-78 °C) solution of N-acyl imide 30a or b (1 mmol) in dry THF (15 mL) was added via cannula to a stirring, -78 °C solution of LDA (2 mmol) in dry THF (12 mL) under an argon atmosphere. After 30 min, Ti(O-i-Pr)₃Cl (4 mmol, 1 M solution in hexane) was added and the reaction mixture was warmed to -40 °C. After 1 h, the mixture was re-cooled to -78 °C and a freshly prepared solution of 2 (2 mmol) in dry THF (3 mL) was added dropwise. After 2 h at -78 °C, the reaction mixture was quenched with saturated aq NH₄Cl (10 mL) and extracted with EtOAc (3× 15 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), concentrated in vacuo, and the residue was purified by PTLC to give 31a and b (66%) combined yield, 1:1). PTLC: benzene/ether (96:4), 31a and **b** $R_{\rm f} \sim 0.67$ and 0.61, respectively. The absolute configurations of **31a** and **b** are based upon comparisons of ${}^{1}H/{}^{13}C$ NMR and are tentative.

9. Spectral and physical data for representative compounds: Compound 5: pale yellow solid, mp 78.8–80.6 °C; TLC: EtOAc/hexane (3:7), $R_f \sim 0.39$; ¹H NMR (CDCl₃, 300 MHz) δ 7.11 (d, 2H, J = 8.4 Hz), 6.82 (d, 2H, J = 8.4 Hz), 4.32 (t, 2H, J = 8.1 Hz), 3.98 (t, 2H, J = 8.1 Hz), 3.78 (s, 3H), 2.94 (t, 2H, J = 7.8 Hz), 2.63 (t, 2H, J = 7.8 Hz), 1.96 (apparent p, 2H, J = 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 173.5, 158.0, 153.7, 133.8, 129.6, 113.9, 62.25, 55.4, 42.7, 34.7, 34.4, 26.3.

Compound **6**: TLC: EtOAc/hexane (3:7), $R_f \sim 0.37$; ¹H NMR (CDCl₃, 300 MHz) δ 7.09 (d, 2H, J = 6.3 Hz), 6.82 (d, 2H, J = 6.3 Hz), 4.82 (t, 1H, J = 9.3 Hz), 4.51–4.36 (m, 2H), 4.23–3.92 (m, 2H), 3.77 (s, 3H), 2.85–2.65 (m, 2H), 2.53–2.25 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 158.2, 153.1, 131.1, 129.4, 113.9, 109.2, 62.4, 55.2, 45.1, 42.5,32.6, 31.6.

Compound 7: mp 74.2–76.6 °C; TLC: EtOAc/hexane (3:7), $R_{\rm f} \sim 0.48$; ¹H NMR (CDCl₃, 400 MHz) δ 8.02 (br s, 1H, NH), 7.08 (d, 2H, J = 8.8 Hz), 6.83 (d, 2H, J = 8.8 Hz), 4.17 (dd, 1H, J = 16, 4.4 Hz), 3.78 (s, 3H), 2.83–2.65 (m, 2H), 2.53–2.44 (m,1H), 2.23–2.13 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 174.7, 170.3, 158.6, 131.2, 129.8, 114.4, 55.5, 50.9, 35.0, 32.4.

Compound 8: mp 76.7–77.7 °C; TLC: EtOAc/hexane (2:3), $R_{\rm f} \sim 0.4$; ¹H NMR (CDCl₃, 300 MHz) δ 7.10 (d, 1H, J = 5.1 Hz), 6.91 (dd, 1H, J = 5.1, 3.3 Hz), 6.81 (d, 1H, J = 3.3 Hz), 4.39 (t, 2H, J = 7.8 Hz), 4.00 (t, 2H, J = 7.8 Hz), 2.99 (t, 2H, J = 7.2 Hz), 2.91 (t, 2H, J = 7.2 Hz), 2.05 (apparent p, 2H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 173.1, 153.7, 144.4, 126.9, 124.7, 123.4, 62.2, 42.6, 34.5, 29.3, 26.3.

Compound **9**: TLC: EtOAc/hexane (3:7), $R_f \sim 0.35$; ¹H NMR (CDCl₃, 400 MHz) δ 7.13–7.05 (d, 1H, J = 5.2 Hz), 6.91 (dd, 1H, J = 5.1, 3.3 Hz), 6.82 (d, 1H, J = 3.3 Hz), 4.84 (t, 1H, J = 8 Hz), 4.49–4.40 (m, 2H), 4.11–3.96 (m, 2H), 3.06–3.02 (m, 2H), 2.57–2.35 (m,2H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 153.4, 141.9, 127.3, 125.6, 124.3, 109.3, 62.8, 45.1, 42.8, 32.7, 26.7.

Compound **10**: mp 67.7–70.2 °C; TLC: EtOAc/hexane (3:7, 3 elutions), $R_{\rm f} \sim 0.38$; ¹H NMR (CDCl₃, 400 MHz) δ 8.95 (s, 1H, NH), 7.17 (d, 1H, J = 4.8 Hz), 6.93 (dd, 1H, J = 4.8, 3.4 Hz), 6.83 (d, 1H, J = 3.4 Hz), 4.25 (dd, 1H, J = 9.6, 4.4 Hz), 3.22–2.86 (m, 2H), 2.61–2.53 (m, 1H), 2.30–2.17 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 175.3, 171.0, 141.6, 127.3, 125.7, 124.4, 50.6, 35.0, 27.4.

Compound **26**: mp 70.8–71.6 °C; TLC: EtOAc/hexane (2:3), $R_{\rm f} \sim 0.44$; ¹H NMR (CDCl₃, 300 MHz) δ 7.35–7.19 (m, 5H), 7.13 (d, 2H, J = 9 Hz), 6.83 (d, 2H, J = 9 Hz), 4.69–4.59 (m, 1H), 4.12–4.21 (m, 2H), 3.78 (s, 3H), 3.28 (dd, 1H, J = 13.2, 3.3 Hz), 3.08–2.88 (m, 2H), 2.74 (dd, 1H, J = 13.2, 3.3 Hz), 2.68–2.63 (m, 2H), 2.04–1.93 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.9, 157.7, 153.3, 135.2, 133.4, 129.3, 128.8, 127.2, 113.6, 66.0, 55.1, 54.9, 37.7, 34.8, 34.1, 25.9; $[\alpha]_{23}^{23}$ –43.7 (c 1.34, CHCl₃). Compound **27**: mp 108.3–109.9 °C; TLC: EtOAc/hexane

Compound **27**: mp 108.3–109.9 °C; TLC: EtOAc/hexane (3:7), $R_{\rm f} \sim 0.30$; ¹H NMR (CDCl₃, 300 MHz) δ 7.35–7.20 (m, 5H), 7.10 (d, 2H, J = 8.8 Hz), 6.82 (d, 2H, J = 8.8 Hz), 4.76 (t, 1H, J = 7.2 Hz), 4.63–4.56 (m, 1H), 4.24–4.16 (m, 2H), 3.76 (s, 3H), 3.29 (dd, 1H, J = 13.6, 3.2 Hz), 2.86–2.79 (m, 2H), 2.75–2.67 (m, 2H), 2.55–2.45 (m, 1H), 2.39–2.28 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.0, 158.6, 153.3, 134.7, 131.7, 129.8, 129.7, 129.3, 127.8, 114.3, 109.4,

69.9, 55.5, 55.4, 45.4, 37.6, 32.6, 31.9; $[\alpha]_{25}^{D}$ -110.1 (*c* 1.05, CHCl₃).

Compound **28**: mp 46.8–48.2 °C; TLC: EtOAc/hexane (2:3), $R_{\rm f} \sim 0.40$; ¹H NMR (CDCl₃, 400 MHz) δ 7.34–7.12 (m, 6H), 6.92 (dd, 1H, J = 3.5, 5.2 Hz), 6.83 (d, 1H, J = 3.5 Hz), 4.68–4.63 (m, 1H), 4.19–4.14 (m, 2H), 3.27 (dd, 1H, J = 13.6, 3.2 Hz), 3.04–2.92 (m, 4H), 2.75 (dd, 1H, J = 13.2, 9.6 Hz), 2.12–2.02 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 172.8, 153.5, 144.3, 135.4, 129.5, 129.1, 127.5, 126.9, 124.7, 123.4, 66.3, 55.2, 38.0, 34.8, 29.2, 26.2; [α]₂₅^D –48.1. (c 1.01, CHCl₃). Compound **29**: Pale yellow solid, mp 62.8–64.2 °C; TLC:

Compound **29**: Pale yellow solid, mp 62.8–64.2 °C; TLC: EtOAc/hexane (1:4, 2 elutions), $R_{\rm f} \sim 0.30$; ¹H NMR (CDCl₃, 300 MHz) δ 7.14–7.38 (m, 6H), 6.92 (dd, 1H, J = 3.6, 5.1 Hz), 6.84 (d, 1H, J = 3.6 Hz), 4.79 (t, 1H, J = 9 Hz), 4.71–4.61 (m, 1H), 4.23 (d, 2H, J = 4.8 Hz), 3.32 (dd, 1H, J = 13.5, 2.7 Hz), 3.10–3.05 (m, 2H), 2.90 (dd, 1H, J = 13.5, 9.3 Hz), 2.70–2.38 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.7, 153.3, 141.9, 134.7, 129.7, 129.3, 127.8, 127.3, 125.6, 124.3, 109.2, 66.9, 55.5, 45.2, 37.6, 32.5, 26.7; $[\alpha]_{25}^{0}$ –79.25 (c 0.81, CHCl₃).

- 10. *TZD cyclization procedure*: NaOMe (2.5 mmol) added with stirring to a 0 °C solution of α -thiocyanate **3** (1 mmol) in dry MeOH/THF (4:1, 50 mL). After 1 h, the reaction mixture was acidified with 2 N HCl to pH 2. After stirring at rt for 3 h, the organic solvent was removed in vacuo and the aqueous residue was extracted with EtOAc (3× 10 mL). The combined organic extracts were washed with water, dried, concentrated in vacuo and the residue purified by SiO₂ chromatography to give 2,4-thiazolidinedione **4** in the indicated yields (Table 1).
- 11. Imide **30** was prepared from racemic 2-methyl-3-phenylpropanoic acid and diastereomers **30a** and **b** were separated chromatographically [TLC: EtOAc/hexane (3:7), **30a** and **b** $R_f \sim 0.40$ and 0.38, respectively]. The absolute configuration of **30a** was established by saponification [LiOH/H₂O₂, THF/H₂O (2:1), 0 °C] and comparison of the free acid optical rotation with the literature value: Lentz, N. L.; Peet, N. P. *Tetrahedron Lett.* **1990**, *31*, 811.
- 12. Murata, Y.; Kamino, T.; Hosokawa, S.; Kobayashi, S. *Tetrahedron Lett.* 2002, 43, 8121.
- Ghaffar, T.; Parkins, A. W. Tetrahedron Lett. 1995, 36, 8657.
- 14. Chiral HPLC of **33**: Chiralpak[®] AD (250×4.6 mm), hexane/i-PrOH/AcOH (5:1:0.01), flow rate 1 mL/min, 230 nm, $R_t \sim 9.86$ and 14.61 min. For **34a** and **b**: $R_t \sim 6.4$ and 13.7 min, respectively.
- The interconversion of 5-substituted TZD enantiomers under various conditions has been noted before: Welch, C. J.; Kress, M. H.; Beconi, M.; Mathre, D. J. Chirality 2003, 15, 143; Shen, Z.; Bakhtiar, R.; Komuro, M.; Awano, K.; Taga, F.; Colletti, A.; Hora, D.; Feeney, W.; Iliff, S.; Franklin, R. B.; Vincent, S. Rapid Commun. Mass Spectrom. 2005, 19, 1125, also see Refs. 2 and 3.