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and fac-IrH3P3, it is the heat of protonation of NEt, that drives 
the endergonic fac - mer transformation. Nevertheless, the fact 
that substoichiometric IrH4P3+ can convert not only fuc to mer 
but also the reverse indicates that this system lacks the stereo- 
specificity that characterizes the transition state (P,IrH4. - -  
NEt,')'. One possibility is that the proton transfer occurs not 
from IrH4P3+ but instead from the unsaturated IrH2P3+ whose 
existence we have demonstrated (eq 3). It is well established that 
unsaturated complexes condense with hydride complexes to form 
hydride bridged dimers.l3,I4 Such reactions are fast, and frag- 
mentation of (P31rH2..-H31rP3)+ (eq 5 )  need not occur with the 

IrH2P3+ + mer-Ir*H3P3 - P31rH2-.-H31r*P3+ - 
Ir*H2P3+ + fuc- and mer-IrH3P3 ( 5 )  

same stereoselectivity as shown by (P31rH4--.NEt3)+. This 
mechanism has the added advantage that it is less susceptible to 
the steric rate reduction reported previously for proton transfer 
between a saturated transition-metal hydride and its conjugate 
base ( H M ~ ( C o ) ~ ( d p p e ) ~ +  with M ~ ( C O ) ~ ( d p p e ) ~ ) . ' ~  Discrim- 
ination between mechanistic alternatives for this unusual reaction 
is the focus of current work. 
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The bleomycins are a family of glycopeptide-derived antitumor 
antibiotics used clinically for the treatment of squamous cell 
carcinomas and malignant lymphomas.' At least three metal- 
lobleomycins mediate oxidative DNA strand scission,* and it is 
this property of the bleomycins that is believed to be responsible 
for their therapeutic effects. Bleomycin-mediated DNA cleavage 
is sequence selective3 and is generally thought to result from DNA 
recognition and binding by the bithiazole moiety and C-terminal 
substituent of BLM,4 and metal chelation and oxygen activation 
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Figure 1. DNA cleavage by bleomycin analogues. Reaction mixtures 
contained 15 pM SV40 DNA in 20 mM sodium cacodylate, pH 7.0 (lane 
l ) ,  plus 0.5 p M  Fe"-BLM A, (lane 2), 1, 5, I O ,  and 50 pM Fe"-de- 
glyco-BLM A, (lanes 3-6, respectively), 1,  5 ,  10, and 50 pM Fe(N- 
H4)2(S04)2 (lanes 7-10), 1, 5, 10, and 50 p M  Fe"e2 (lanes 11-14), or 
1, 5, 10, and 50 pM FeII.3 (lanes 15-18). Lanes 4-6 reflect extensive 
DNA degradation by deglyco-BLM A,. 

by the N - t e r m i n ~ s , ' ~ . ~  although there is only limited direct sup- 
porting evidence. The appearance of several recent reports con- 
taining data whose interpretation appears inconsistent with this 
view6 prompts us to describe experiments that employ bleomycin 
analogues lacking the putative DNA binding domain. Presently, 
we demonstrate that the C-terminus of bleomycin is required for 
DNA strand scission, and that oxygen activation can be effected 
by the N-terminus alone. Also illustrated for the first time is the 
transfer of oxygen from an activated Fe complex to a cis olefin 
with preferential formation of the trans-epoxide. 

Bleomycin derivatives lacking the carbohydrate moiety (e.g., 
deglycobleomycin A2 ( l a ) )  bind metal ions and activate oxygen 

Metal ~ 

Binding' ~ 

Oxygen Activation ~ 

NH, u NH 

l a  R H 
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nearly as well as the respective bleomycins (bleomycin Az (lb)).' 
They have been shown to mediate DNA strand scission with the 
same sequence specificity as the respective bleomycin~;~~ following 
anaerobic activation with C6HsI0 both bleomycin and deglyco- 
bleomycin converted cis-stilbene to cis-stilbene o ~ i d e . ~ ~ . ~  For the 
present study we employed an analogue of deglycobleomycin 
(compound 28) lacking the putative DNA binding domain, as well 

H 

(N-NH, 
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product. Previous studies using cytochrome P-450 and related 
model compounds containing ligated Fe have shown the cis isomer 
of stilbene to be the preferred substrate for epoxidation and 
cis-stilbene oxide to be the predominant p r 0 d ~ c t . l ~  Analogous 
findings for three metallobleomycinsze~sc and two metallode- 
glycoble~mycins~ have reinforced these observations, as well as 
the mechanistic similarities between bleomycin and cytochrome 
P-450 as regards oxygen activation and transfer. The present 
finding parallels the observation by Valentine and co-workers that 
trans-stilbene oxide was produced from cis-stilbene via the agency 
of C U ( N O ~ ) ~  + C6Hs10.15 It seems reasonable to suggest that 
the stereoselectivity noted previously for cis-stilbene finds its basis 
in the greater steric accessibility of this isomer to the bulky ep- 
oxidizing agents.16 
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as a structurally simpler analogue (3) reported by HEnichart et 
al.1° 

Shown in Figure 1 is the attempted cleavage of SV40 form I 
DNA using 2 and 3 in the presence of Fe(I1) and O2.l1 At 
concentrations of Fells2 (lanes 11-14) and FeII.3 (lanes 15-18) 
up to 50 pM, no conversion to form I1 (nicked circular) DNA 
or form I11 (linear duplex) DNA was noted beyond that produced 
by Fe(I1) alone (lanes 7-10). In contrast, Fe(I1)-deglyco- 
bleomycin produced extensive DNA degradation when tested over 
the same concentration range (lanes 3-6). 

Although the lack of activity of Fe(I1) + 2 or 3 in DNA strand 
scission seemed likely to be due to the absence of the putative DNA 
binding domain, it was also possibly due to lack of Fe(I1) binding 
by 2 or 3 or to an inability to activate or transfer oxygen. Ac- 
cordingly, the formation of FeII.2 and FeII.3 was established by 
spectral determination,lZ and each was utilized for the attempted 
epoxidation of cis-stilbene following activation with C6HSI0,  a 
transformation already established for bleomycinSc and deglyco- 
bleomycin.' When employed at 0.57 mM concentration, Fe"I.2 
and Fe"I.3 both effected epoxidation of cis-stilbene; the yields were 
N 150% in each case, based on added ligand.13 Similar yields 
of trans-epoxide were obtained when FeII-2 or Fells3 were incu- 
bated in the presence of cis-stilbene + O2 + ascorbate. This 
confirmed the activation and transfer of oxygen by 2 and 3 in more 
traditional bimolecular reactions and served to define those 
structural components of BLM required for oxygen activation. 

One remarkable feature of cis-stilbene oxidation by 2 and 3 
was the finding that trans-stilbene oxide was the predominant 

(7) Aoyagi, Y.; Suguna, H.; Murugesan, N.; Ehrenfeld, G. M.; Chang, 
L.-H.; Ohgi, T.; Shekhani, M. S.; Kirkup, M. P.; Hecht, S. M. J .  Am. Chem. 
SOC. 1982, 104, 5237. 
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1980, 102, 6633. 
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7.0, were incubated at 25 OC for 1 h. The reaction was terminated (1 mM 
EDTA) and samples were loaded onto 1.2% agarose gels containing 1 pg/mL 
ethidium bromide for electrophoretic analysis (16 h at  40 V in 40 mM 
Tris-OAc, 5 mM NaOAc, 1 mM EDTA, pH 7.8). 
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reaction was subjected to extractive workup and analyzed by HPLC.2C 
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The reaction of (ethylene)bis(tri-o-tolyl phosphite)nickel, 
(CzH4)L2Ni(0) [L = P(O-o-tolyl)J (l) ,  with ethylene and hy- 
drogen cyanide at -40 'C produces (C2H4)L(CN)(C2Hs)Ni(II) 
(2) quantitatively (eq 1). Reaction of 2 with tri-o-tolyl phosphite 

N 
C 

fast  CHz 
LZNi-11 t HCN t C,H, 7 L-?i-E+ t L (1) 

CH2 CHz-CHz _I 
1 

2 
N 
C 
I CHZ 

L-Ni-Et t L llO* LZNi-11 t EtCN ( 2 )  

CHz -CHz 
_L C Hz 

,. L 
(L) causes reductive elimination of propionitrile and regenerates 

As part of our continuing studies of olefin hydrocyanation, we 
carried out kinetic measurements of the previously reported 
nickel-catalyzed hydrocyanation of ethylene,' eq 3, at low tem- 

1 (eq 2). 

Ni(0) 
H C N  + C2H4 C2HsCN (3) 

perature utilizing proton N M R  spectroscopy. Starting with the 
ethylene complex 1 rather than the [ (0-tolyl-O),P] ,Ni previously 

(1) Tolman, C. A,; Seidel, W. C.; Druliner, J. D.; Domaille, P. J. Or- 
ganometallics 1984, 3, 33-38. 

0 1985 American Chemical Society 


