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Asymmetric monobenzoylation reactions of cyclic
corresponding monobenzoylated diol with good yield and enantioselectivity.

meso-1,3- and 1,4-diols were catalyzed by a phosphinite derivative of quinidine to afford the

Enantioselective monoacylation ofesediols is a powerful

methodology for the preparation of useful chiral building

blocks.
nonenzymatic catalysts for the desymmetrizatiormeafse
diols by asymmetric acylation have been reported.
particular, some effective nonenzymatic catalystsniese
1,2-diols have been realizéd-dowever, in comparison to
the promising results of thenesel,2-diols, only a few

and effective honenzymatic catalysts for them have been
recently reported. In 2000, Oriyama et al. reported the

In recent years, several successful examples ofimpressive catalytic asymmetric monobenzoylatiorcisf

4-cyclopentene-1,3-diol by chiral diamine organocatal§/sts.

In The reaction was catalyzed by only 0.5 mol % of the chiral

diamines to afford the monobenzoylated product with excel-
lent enantioselectivity (98% ee), but the yield of the product
decreased because of the formation of the dibenzoylated

examples of the nonenzymatic asymmetric acylation catalystsproduct.

for 1,3- or 1,4-diols have been reporteth particular, the
asymmetric desymmetrization of cyclimesoi,3- or 1,4-

We have recently designed a bifunctional organocatélyst
bearing both Lewis basic phosphinite andpBsted basic

diols was mainly carried out using an enzymatic procedure, tertiary amine functional groups for asymmetric acylation
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of mesodiols and demonstrated that a phosphinite derivative monoacylated products were isolated in all cases. However,

of cinchoninela (Figure 1) catalyzed the reaction wfieso-

1a:R=H
1b: R = OMe

1c:R=H
1d: R = OMe

Figure 1. Phosphinite derivatives of cinchona alkaloids.

1,2-diols with benzoyl chloride to give the monobenzoylated
products with high enantioselectivities and yietddn the

basis of these results, we examined the catalytic asymmetric

acylation of 1,3-diols using the phosphinite derivatives of

cinchona alkaloids as catalysts. In this communication, we

report the effective enantioselective acylation of cynliese
1,3- and 1,4-diols catalyzed by the phosphinite derivative
of quinidine 1b.

We initially examined the reaction of 2-methyl-1,3-
propanedioRa with benzoyl chloride in the presence of an
equimolar amount of the phosphinite derivative of cinchonine
1la, which was prepared in situ from chlorodiphenylphos-

phane and cinchonine in order to test the effectiveness of

the catalyst for the asymmetric acylation of 1,3-diols.
Although the corresponding monoacylated proddetvas
obtained in a moderate yield, no enantioselectivity was
observed (Scheme 1).

Scheme 1. Monobenzoylation Reaction of 2-Substituted
1,3-Propanediols in the Presencelaf
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3a:R' = Me, R? = H: 56%, 3% ee
3b: R'=Ph, R? = H: 57%, 0% ee
3c:R' = Bn, R? = H: 48%, 0% ee
3d: R"' = Ph, R? = Me: 62%, 2% ee

Reactions employing other acyclic 1,3-di@ks—d under

the same reaction conditions were attempted, but racemic
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when the cyclicmesel,3-diol, cis-4-cyclopentene-1,3-diol
4, was reacted with benzoyl chloride in the presence of an
equimolar amount ola, the corresponding 4-benzoyloxy-
2-cyclopenten-1-db was obtained with 61% ee in 83% yield
(Table 1, entry 1). The major product was found to be a

Table 1. Asymmetric Desymmetrization of
cis-4-Cyclopentene-1,3-diol in the Presence of Phosphinite
Derivatives of Cinchona Alkaloids

Cinchona PhyPCI (1 equiv.)

3 > [1a-1d
Alkaloids  jpr NEt (1 equiv.), CHoCly, 1t, 1.5 h | ]
OH
+ BzCl (1.5 equiv.)
A OBz OH
4 (1 equiv.) _ N
iProNEt (1 equiv.), CHoCly, 0°C, 1.5 h
OH OBz
5
entry phosphinite yield (%)* ee (%)°
1 la 83 61
2 1b 76 80
3 1lc 60 45
4 1d 57 57

aYield of isolated product® Determined by chiral HPLC analysis.

(1R,49-isomer by comparison with the reported optical
rotation of5.2° Moreover, the reactions using other cinchona
alkaloids were conducted under the same reaction conditions.
As a result, when the phosphinite derivative of quinidlie
was employed, the corresponding monobenzoylated product
was produced with the best enantioselectivity (80% ee) in
76% yield (Table 1, entry 2). The absolute configuration of
the major product was the same as that for entry 1 in Table
1. On the other hand, the monobenzoylated products obtained
from the derivatives of cinchonidine and quininkc(@nd
1d, respectively) had the opposite absolute configuration.
The phosphinite derivatives were assumed to be air-
sensitive; however, the corresponding derivative of quinidine
could be isolated through column chromatography with high
purity (containing only 2% of phosphinate) using a neutral
silica gel. In the*’P NMR, the signal assigned to the trivalent
phosphinite was observed at 114 ppm as almost a single peak.
The reaction employing 1 equiv of the isolated phosphinite
1b was conducted to improve the selectivity and the yield
of 5. Although 5 was obtained with a slightly increased
selectivity and yield, a drastic improvement was not realized
(Scheme 2). Moreover, reaction under various reaction
conditions in the presence of 1 equiv b was conducted
in order to optimize the asymmetric acylation reactiord.of

(6) Mizuta, S.; Sadamori, M.; Fujimoto, T.; YamamotoAhgew Chem,
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s metric benzoylation was used for the other cydliesel,3-

Scheme 2. Asymmetric Desymmetrization of and 1,4-diols. Whercis-1,3-indandiol 6 was used as a
cis-4-Cyclopentene-1,3-diol Usingb substrate, the corresponding monobenzoylated product was
OH 1b (1 equiv.) OBz produced with excellent selectivity. In particular, the reaction
BzCl (1.5 equiv.) of 6in the presence of 20 mol %b for a prolonged reaction
Q iPrNEL (1 quiv.), CHCly, 0°C 1 h Q time supplied the product with more than 99% ee in 72%
OH OH yield (Table 2, entry 5). The improvement of the enantio-

selectivity was ascribed to the further kinetic resolution of
the monobenzoylated product. However, the reaction of a
racemic monobenzoylated compoufidvith 0.5 equiv of

The use of other solvents (CHCbr EtCN), a coexisting benzoy! chlpride_in the presence of 29 moI]%_gave the
tertiary amine (triethylamine), and acylation reageotsof correspon(jlng dibenzoylated produdl in low yield, anq
p-chlorobenzoyl chloride) did not improve the selectivity and theo racemic monobenzoylated proq “cwvas recovered in
yield of 5. Additionally, for the reaction at lower temperature, 8.9/0 yield (Scheme 3)..Therefo.r¢.a, It was suggestgd that the
the yield of the product decreased, and the selectivity washlgh Ievgl of the_enantlt_)select_lv_lty (Table 2, entries3)

not constant due to the insolubility of the substrate in cold was a_chleved p”maf"y n the |n|t|a_\l step of th_e monoben-
dichloromethane. zoylation. The functionalized cyclienesoi,4-diol 7 and

Finally, we investigated the reaction employing a catalytic cyclic _me501,4-d|ol 8 were glso Converted. 0 the_c_orre-
amount of the isolated phosphinité. To our delight, the sponding monobenzoates with good enantioselectivity.
reaction of4 with 1.5 equiv of benzoyl chloride proceeded
smoothly in the presence of 30 mol % to afford 5 with
81% ee in 82% yield (Table 2, entry 1). The same reaction ~ Scheme 3. Reaction of Racemic Monobenzoaavith
using 20 mol %lb resulted in a low selectivity and yield of Benzoyl Chloride in the Presence b

4 5: 84%, 83% ee

the product. It was clarified that the dibenzoate was also OBz 1p (20 mol%) 0Bz OBz
formed in 11-15% yield. The optimized catalytic asym- BzCl (0.5 equiv) _ .
iProNEt (0.5 equiv.)
OH CHxCly, 0 °C,2.5h OH OBz
Table 2. Catalytic Asymmetric Desymmetrization of Cyclic 9: racemic 9: 89%, 0% ee 10: 5%

mesel,3- and 1,4-Diols Usingb?

OH OH ¢H OTBS As described above, we demonstrated that the phosphinite
E} ©:§ C@ /@\ 1b, easily prepared from commercially available quinidine,
was a particularly effective nonenzymatic catalyst for the
OH OH on O OH

asymmetric benzoylation of the cyclinesol,3- and 1,4-

diols. Although the reaction mechanism in the present
asymmetric benzoylation of diols remains to be elucidated,
monobenzoate  dibenzoate we postulate that the reaction is initiated by the activation
of benzoyl chloride by the Lewis basic phosphinite. Further

4 6 7 8

talyst  ti ield ield S i T .
entry  diol ?21?1}:;) g?)e }(';: » (;Sc }(I;j)b application of the phosphinite derivatives of the cinchona
alkaloids to the asymmetric desymmetrization reaction are
1 4 30 4 82 81 15 currently underway in our laboratory.
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